K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:

Đặt $n^4+4n^2-1=a^2$ với $a$ là số tự nhiên 

$\Leftrightarrow (n^2+2)^2-5=a^2$

$\Leftrightarrow 5=(n^2+2)^2-a^2=(n^2+2-a)(n^2+2+a)$

Do $n^2+2+a\geq n^2+2-a$ với $a\geq 0$ và $n^2+2+a>0$ nên:

$n^2+2+a=5$ và $n^2+2-a=1$

$\Rightarrow 2(n^2+2)=6\Rightarrow n^2+2=3$

$\Leftrightarrow n^2=1$

$\Rightarrow n=\pm 1$

\(\Leftrightarrow4n^2-n+12n-3+7⋮4n-1\)

\(\Leftrightarrow4n-1\in\left\{-1;7\right\}\)

hay \(n\in\left\{0;2\right\}\)

2 tháng 1 2022

n=2

30 tháng 6 2018

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v

4 tháng 10 2018

Đặt \(n^2-n+2=a^2\left(a\in N\right)\)

\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)

\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)

Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)

\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)

Vậy n=2 thì ...

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .

20 tháng 2 2018

tự túc là hạnh phúc

26 tháng 4 2016

gọi số đó là ab

ta có ab-ba=18

=> 9b-9a=18

=>b-a=2

mà a+b=14

=>a=6,b=8

26 tháng 4 2016

mk kg hieu ts lai co 9b-9a=18