K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 5 2021

\(x^2-xy+y^2=x+y+3\)

\(\Leftrightarrow2x^2-2xy+2y^2-2x-2y+2=8\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=8=0+4+4\)

\(8\)có cách phân tích duy nhất thành tổng của \(3\)số chính phương là \(0+4+4\)nên ta có các trường hợp sau: 

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=4\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y=3\\x=y=-1\end{cases}}\)

\(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=0\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1,y=3\\x=1,y=-1\end{cases}}\)

\(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=4\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3,y=1\\x=-1,y=1\end{cases}}\)

18 tháng 5 2021

x2 - xy + y2 = x + y + 3

<=> x2 - ( y + 1 )x + y2 - y - 3 = 0 (*)

Xét (*) ta có : Δ = b2 - 4ac = [ -( y + 1 ) ]2 - 4( y2 - y - 3 )

= y2 + 2y + 1 - 4y2 + 4y + 12 = -3y2 + 6y + 13

(*) có nghiệm <=> Δ ≥ 0 <=> -3y2 + 6y + 13 ≥ 0 <=> \(\frac{3-4\sqrt{3}}{3}\le y\le\frac{3+4\sqrt{3}}{3}\)

Vì y nguyên dương => y ∈ { 1 ; 2 ; 3 }

Với y = 1 (*) trở thành x2 - 2x - 3 = 0 có a - b + c = 0 nên có hai nghiệm x1 = -1 (ktm) ; x2 = -c/a = 3 (tm)

Với y = 2 (*) trở thành x2 - 3x - 1 = 0 có Δ = 13 không là SCP nên không có nghiệm nguyên

Với y = 3 (*) trở thành x2 - 4x + 3 = 0 có a + b + c = 0 nên có hai nghiệm x1 = 1 (tm) ; x2 = c/a = 3 (tm)

Vậy ( x ; y ) = { ( 3 ; 1 ) , ( 1 ; 3 ) , ( 3 ; 3 ) }

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)