Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: D = m m + 2 1 m = m 2 − m − 2
D x = 5 m + 2 2 m + 3 m = 5 m − ( m + 2 ) ( 2 m + 3 ) = − 2 m 2 − 2 m − 6
D y = m 5 1 2 m + 3 = 2 m 2 + 3 m − 5
Để hệ phương trình có nghiệm duy nhất thì D ≠ 0 ⇔ m 2 − m − 2 ≠ 0 ⇔ m ≠ − 1 m ≠ 2
Khi đó: x = D x D = − 2 ( m 2 + m + 3 ) m 2 − m − 2 ; y = D y D = 2 m 2 + 3 m − 5 m 2 − m − 2
Để hệ phương trình có nghiệm âm thì: − 2 ( m 2 + m + 3 ) m 2 − m − 2 < 0 ( 1 ) 2 m 2 + 3 m − 5 m 2 − m − 2 < 0 ( 2 )
1 ⇔ m 2 + m + 3 m 2 − m − 2 > 0 ⇔ m 2 − m − 2 > 0 ( v ì m 2 + m + 3 = m + 1 2 2 + 11 4 > 0 , ∀ m )
⇔ m < − 1 m > 2 *
2 ⇔ 2 m 2 + 3 m − 5 > 0 m 2 − m − 2 < 0 2 m 2 + 3 m − 5 < 0 m 2 − m − 2 > 0 ⇔ m < − 5 2 m > 1 − 1 < m < 2 − 5 2 < m < 1 m < − 1 m > 2 ⇔ 1 < m < 2 − 5 2 < m < − 1 * *
Từ (*) và (**) suy ra − 5 2 < m < − 1
Đáp án cần chọn là: D
- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)
\(\Rightarrow xy=2m^2-m\)
- Hệ PT trên có nghiệm là nghiệm của PT :
\(x^2-2x+2m^2-m=0\) ( I )
Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)
- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)
\(\Leftrightarrow-2m^2+m-1>0\)
Vậy không tồn tại m để hệ phương trình có nghiệm .
Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé.
Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)
Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :
\(m\left(m+1-my\right)+y=3m-1\)
\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)
Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.
Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.
Xét với \(m\ne1\) và \(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)
\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)
Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)
Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được
\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)
Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)
Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)
Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1
Ta có: D = m − 1 3 m = m 2 + 3 ; D x = 2 − 1 5 m = 2 m + 5 ; D y = m 2 3 5 = 5 m − 6
Vì m 2 + 3 ≠ 0 , ∀ m nên hệ phương trình luôn có nghiệm duy nhất x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3
Theo giả thiết, ta có:
x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1
⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2
Đáp án cần chọn là: A
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
Ta có D = m − 1 2 m = m 2 + 2 > 0 , ∀ m ∈ R nên hệ phương trình luôn có nghiệm duy nhất
D x = 3 − 1 9 m = 3 m + 9 ; D y = m 3 2 9 = 9 m − 6
Vậy hệ luôn có nghiệm duy nhất là: x = 3 m + 9 m 2 + 2 y = 9 m − 6 m 2 + 2
Ta có: A = 3 x − y = 3 3 m + 9 m 2 + 2 − 9 m − 6 m 2 + 2 = 33 m 2 + 2
Vì m ∈ Z nên để A nguyên thì m 2 + 2 là ước của 33 mà m 2 + 2 ≥ 2 nên ta có các trường hợp sau:
Mà m nguyên dương nên m ∈ 1 ; 3
Vậy có 2 giá trị nguyên dương của m để A nguyên.
Đáp án cần chọn là: B
\(\left\{{}\begin{matrix}x+y=m\\2x+my=2m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=2m\\2x+my=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2-m\right)y=-2\\x+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=\dfrac{m^2-2m-2}{m-2}\end{matrix}\right.\)
Vậy ..