K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

15 tháng 3 2018

Ta có 

Suy ra đồ thị có hai điểm cực tiểu là  A - m 2 - m + 1 ; y C T và  B m 2 - m + 1 ; y C T

Khi đó 

Dấu  xảy ra khi m=1/2.

Chọn B.

19 tháng 1 2019

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

7 tháng 3 2019

9 tháng 8 2017

Ta có y’ = 3x2- 6mx + 3( m2-1).

Hàm số đã cho  có cực trị thì phương trình y’ =0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0   có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m   

Khi đó, điểm cực đại  A( m-1; 2-2m) và điểm cực tiểu  B( m+1; -2-2m)

Ta có 

Tổng hai giá trị này là -6.

Chọn C.

28 tháng 12 2019

Ta có

 

Để hàm số có hai cực trị kh y’=0  có hai nghiệm phân biệt

  ⇔ 2 - m ≠ - 1 ⇔ m ≠ 3

Nếu  -1<2-m hay m<3,

ycbt 

Nếu 2-m<-1 hay m>3, ycbt 

Vậy  m ∈ - 1 ; 3 ∪ 3 ; 4

Chọn A.

8 tháng 1 2019

+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)

do đó  hàm số luôn có cực đại cực tiểu với mọi m.

+ Tọa độ các điểm CĐ, CT của đồ thị là  A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)

Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.

 

+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M  tới AB nhỏ nhất.

d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n   d ( M , A B ) = 1 2

đạt được khi m=0

Chọn B

30 tháng 9 2018

Chọn B

Ta có:

⇒ ∀ m ∈ ℝ , hàm số luôn có CĐ, CT

Tọa độ các điểm CĐ, CT của đồ thị là

Suy ra A B = 2

và phương trình đường thẳng  x + y - 2 m 3 - 3 m 2 - m - 1 = 0

Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.

Ta có:

⇒ đạt được khi m = 0