
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3n+13 chia hết cho n+1=> 3n+3+10 cg chia hết cho n+1=>3*(n+1)+10chia hết cho n+1=> 10 chia hết cho n+1=> tìm n

3.n+13 chia hết cho n
vì 3.n chia hết cho n
nên 3.n+13 chia hết cho n
khi 13chia hết cho n
suy ra n thuộc Ư(13)
suy ra n thuộc {1;13}
\(3n+13⋮n\)
\(\Rightarrow\hept{\begin{cases}3n+13⋮n\\3n⋮n\end{cases}}\)
\(\Rightarrow3n+13-3n⋮n\)
\(13⋮n\)
\(\Rightarrow n\inƯ\left(13\right)=\left\{1;13\right\}\)
Vậy \(n\in\left\{1;13\right\}\)

\(3n+1⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+4⋮n-1\)
Vì \(3.\left(n-1\right)⋮n-1\)=> \(4⋮n-1\)
Hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng sau :
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy ....



3n + 9 ⋮ n + 2
3n + 6 + 3 ⋮ n + 2
3.(n + 2) + 3 ⋮ n + 2
3 ⋮ n + 2
n + 2 \(\in\) Ư(3) = {-3; -1; 1; 3}
n \(\in\) {-5; -3; -1; 1}
n \(\in\) {1}

a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
a) ta có: \(B = \frac{n}{n - 3} = \frac{n - 3 + 3}{n - 3} = \frac{n - 3}{n - 3} + \frac{3}{n - 3}\)
Để B là số nguyên
\(\Rightarrow \frac{3}{n - 3} \in z\)
\(\Rightarrow 3 n - 3 \Rightarrow n - 3 \in Ư_{\left(\right. 3 \left.\right)} = \left(\right. 3 ; - 3 ; 1 ; - 1 \left.\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n \in \left(\right. 6 ; 0 ; 4 ; 2 \left.\right)\)
b) đề như z pải ko bn!
ta có: \(C = \frac{3 n + 5}{n + 7} = \frac{3 n + 21 - 16}{n + 7} = \frac{3. \left(\right. n + 7 \left.\right) - 16}{n + 7} = \frac{3. \left(\right. n + 7 \left.\right)}{n + 7} - \frac{16}{n + 7} = 3 - \frac{16}{n + 7}\)
Để C là số nguyên
\(\Rightarrow \frac{16}{n + 7} \in z\)
\(\Rightarrow 16 n + 7 \Rightarrow n + 7 \in Ư_{\left(\right. 16 \left.\right)} = \left(\right. 16 ; - 16 ; 8 ; - 8 ; 4 ; - 4 ; 2 ; - 2 ; 1 ; - 1 \left.\right)\)

Để 3n+2/n-1 có giá trị là số nguyên
=>3n+2 chia hết cho n-1
=>(3n+2)-(n-1) chia hết cho n-1
=>(3n+2)-3(n-1) chia hết cho n-1
=>(3n+2)-(3n-1) chia hết cho n-1
=> 3n+2 - 3n -1 chia hết cho n-1
=>1 chia hết cho n-1
=> n=0;2
hok tốt nha
Có 3n + 13 = (3n + 3 )+ 10
=3. (n+1) +10
Có n+1 chia hết cho n+1 => 3(n+1) chia hết cho n+1
=>10 chia hết cho n+1
=> n+1 thuộc ước của 10
Ư(10) = {1;2;5;10}
=> n thuộc {0;1;4;9} (thỏa mãn)
vậy n thuộc{0;1;4;9}
3n +13 CHC n+1
=>3n + 13 - 3(n+1) CHC n+1
=> 10 CHC n+1
=> n+1 là Ư của 10
=> n+1 \(\in\)(\(-1-2,-5,-10,10,5,2,1\))
=> n\(\in\)(0,1,4,9)
kl........................