Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(-1\le sinx\le1\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
Do \(-1\le sinx\le1\) nên pt có nghiệm khi:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(m^2+1\ge\left(m+1\right)^2\)
\(\Leftrightarrow m^2+1\ge m^2+2m+1\)
\(\Leftrightarrow m\le0\)
Để pt đã cho vô nghiệm thì:
\(1^2+\left(m-1\right)^2< \left(\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2< 4\)
\(\Rightarrow-2< m-1< 2\)
\(\Rightarrow-1< m< 3\)
1.
\(3cos2x-7=2m\)
\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)
Phương trình đã cho có nghiệm khi:
\(-1\le\dfrac{2m-7}{3}\le1\)
\(\Leftrightarrow2\le m\le5\)
2.
\(2cos^2x-\sqrt{3}cosx=0\)
\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)
\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)
\(\Leftrightarrow cos^2x-2cosx+1=m\)
\(\Leftrightarrow\left(cosx-1\right)^2=m\)
Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)
\(\Rightarrow0\le m\le4\)