K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

23 tháng 2 2019

Ta có  2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2

10 tháng 3 2022

\(\left\{{}\begin{matrix},m\ne0\\\Delta'>0\Leftrightarrow m^2-m>0\\x1+x2>0\Leftrightarrow2>0\\x1.x2>0\Leftrightarrow\dfrac{1}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)\(\Leftrightarrow m>1\)

5 tháng 5 2017

22 tháng 5 2018

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

1 tháng 8 2018

Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.

* Với m = 0 thì bất phương  trình đã cho trở thành:

        0 x ≤ 0 ( luôn đúng với mọi  x)   ( loại)

* Với m = -3 thì bất phương trình đã cho trở thành:

        0 x ≤ 9   (luôn đúng với mọi  x)   ( loại)

Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm

23 tháng 3 2018

x - y = m                           ( 1 ) x 2 - x y - m - 2 = 0   ( 2 )

Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:

 x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0

hay mx –m -2 = 0 (*) .

Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .

Chọn B.

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

29 tháng 1 2017

Ta có  f x ≥ 0 ⇔ x + 3 m ≥ 2 ⇔ x ≥ 2 - 3 m

f x ≥ 0  với mọi x ∈ [ 1 ; + ∞ ) ⇔ [ 1 ; + ∞ ) ⊂ [ 2 - 3 m ; + ∞ ) ⇔ 2 - 3 m ≤ 1 ⇔ m ≥ 1 3 .

Chọn C.