K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: m>1

 

24 tháng 10 2021

a. m>1

24 tháng 10 2022

b: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4}=-\dfrac{4-12}{4}=\dfrac{-\left(-8\right)}{4}=2\end{matrix}\right.\)

=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1

a: \(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-1}-\dfrac{x_2+1}{x_2-1}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_1x_2-x_1+x_2-1-x_1x_2+x_2-x_1+1}{\left(x_1-1\right)\left(x_2-1\right)}\cdot\dfrac{1}{x_1-x_2}\)

\(=\dfrac{-2}{\left(x_1-1\right)\left(x_2-1\right)}\)

Nếu x1<1; x2<1 thì (x1-1)(x2-1)>0

=>A<0

=>Hàm số nghịch biến

Nếu x1>1; x2>1 thì (x1-1)(x2-1)>0

=>A<0

=>Hàm số nghịch biến

17 tháng 8 2016

a) Hàm số đồng biến khi (2m+3) > 0 => m > -3/2

 Hs nghịch biến khi (2m+3) < 0 => m < -3/2

b) , c , d tương tự

NV
9 tháng 5 2019

Câu 1:

\(\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)

Câu 2:

Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)

Tất cả các đáp án đều sai

Câu 3:

Để pt có 2 nghiệm pb

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)

\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta

15 tháng 2 2019

y = m(x + 2) – x(2m + 1) = (-1 – m)x + 2m

Hàm số bậc nhất y = ax + b nghịch biến suy ra a < 0 hay m > -1

Chọn C.

NV
23 tháng 9 2020

a.

Hàm đồng biến trên R \(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\2-m\ge0\end{matrix}\right.\) \(\Leftrightarrow-2< m\le2\)

b.

\(y=\frac{3}{3m-5}x+\frac{5}{5-3m}\)

Hàm nghịch biến trên \(R\Leftrightarrow3m-5< 0\Leftrightarrow m< \frac{5}{3}\)