Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Đáp án B
Phương pháp:
Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.
Cách giải:
Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)
Đáp án D.
Ta có
y ' = 3 e 3 x - m - 1 e x . 2017 2018 e 3 x - m - 1 e x + 1 . ln 2017 2018
Để hàm số đồng biến trên (1;2)
⇔ y ' ≥ 0 ; ∀ x ∈ 1 ; 2 ⇔ 3 e 3 x - m - 1 e x ≤ 0 ; ∀ x ∈ 1 ; 2 .
⇔ 3 e 2 x - m + 1 ≤ 0 ; ∀ x ∈ 1 ; 2
⇔ m - 1 ≥ 3 e 2 x ; ∀ x ∈ 1 ; 2
⇔ m ≥ 3 e 4 + 1 .
\(\Leftrightarrow\) Với mọi \(x>1\) thì:
\(y'=\dfrac{x+m}{\sqrt{x^2+2mx+m^2+1}}\ge0\)
\(\Leftrightarrow x\ge-m\) (\(\forall x>1\))
\(\Leftrightarrow-m\le1\)
\(\Leftrightarrow m\ge-1\)
Dạ m có thể =-1 ạ? em thấy trong đáp án không có đáp án nào là có dấu bằng cả