K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2020

Gọi cặp số là \(\left(m;n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}m+1=a.n\\n+1=b.m\end{matrix}\right.\) với \(a;b\in Z^+\)

\(\Rightarrow\left\{{}\begin{matrix}m=an-1\\n+1=bm\end{matrix}\right.\) \(\Rightarrow n+1=b\left(an-1\right)\)

\(\Rightarrow\left(ab-1\right)n=b+1\Rightarrow n=\frac{b+1}{ab-1}\)

- Với \(a=1\Rightarrow n=\frac{b+1}{b-1}=1+\frac{2}{b-1}\Rightarrow b=\left\{2;3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}n=3\Rightarrow m=2\\n=2\Rightarrow m=3\end{matrix}\right.\)

- Với \(a\ge2\Rightarrow ab-1\ge2b-1\)

Mặt khác \(n\in Z^+\Rightarrow n\ge1\Rightarrow\frac{b+1}{ab-1}\ge1\Rightarrow b+1\ge ab-1\)

\(\Rightarrow b+1\ge2b-1\Rightarrow b\le2\Rightarrow b=\left\{1;2\right\}\)

Với \(b=1\Rightarrow n=\frac{2}{a-1}\Rightarrow a=\left\{2;3\right\}\Rightarrow n=\left\{1;2\right\}\)

\(\Rightarrow\left(m;n\right)=\left(1;2\right);\left(2;1\right)\)

Với \(b=2\Rightarrow n=\frac{3}{2a-1}\Rightarrow a=\left\{1;2\right\}\Rightarrow n=\left\{3;1\right\}\) (giống trên)

Vậy ta có các cặp số là \(\left(1;2\right);\left(2;3\right)\)

6 tháng 2 2020

cảm ơn ạ

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)

[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Xét x= 1 => , từ đó có y=2∨y=3

Xét y=1 => , từ đó có x=2∨x=3

Xét x≥2 hoặc y≥2 . Ta có : (x,xy−1)=1. Do đó :

xy−1|x3+x⇒xy−1|x2+1⇒xy−1|x+y

=> x+y≥xy−1⇒(x−1)(y−1)≤2. Từ đó có  

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

17 tháng 1 2022

what

 

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

17 tháng 1 2022

Nhìn bài là thấy khó rồi bạn.

17 tháng 1 2022

tui ngồi từ 7h sáng tới h lun á :>

 

8 tháng 10 2023

Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)

8 tháng 10 2023

 Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.

 Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.

 Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)