K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

biểu thức đã cho là số tự nhiên khi n^2+14n-256=a^2(a là số tự nhiên)

n^2+14n+49=a^2+49+256=a^2+305

(n+7)^2= a^2+305

vì n là số tự nhiên nên n+7 là số tự nhiên nên (n+7)^2 là số chính phương có dang b^2(b là số tự nhiên)

suy ra a^2+305=b^2

b^2-a^2=305

(b-a)(b+a)=305

vì a và b là số tự nhiên nên a+b là số tự nhiên và b+a>b-a

suy ra b+a là ước tự nhiên của 305={1;5;61;305}

nếu b+a=1 thì b-a=305>b+a(loại)

nếu b+a=5 thì b-a=61>b+a(loại)

nếu b+a=61 thì b-a=5 suy ra a=28 thay vào tìm được n=26

nếu b+a=305 thì b-a=1 suy ra a=152 thay vào tìm đươc n=146

vây n=26 hoặc n=146 tmđb

13 tháng 6 2017

Để \(\sqrt{n^2+n+20}\) là số hữu tỷ thì \(n^2+n+20\) phải là số chính phương.

\(n^2+n+20=x^2\left(x\in N\right)\)

Ta có:

\(n^2< n^2+n+20< \left(n+5\right)^2\)

\(\Rightarrow\left(n^2+n+20\right)=\left[\left(n+1\right)^2;\left(n+2\right)^2;\left(n+3\right)^2;\left(n+4\right)^2\right]\)

\(\Rightarrow n=19\)

12 tháng 2 2017

Ta có: A= \(2^8+2^{11}+2^n=\)\(=2304+2^n=9.256+2^n=2^8\left(9+2^{n-8}\right)\)

Vây để biểu thức là số hữu tỷ thì A là số chính phương, vậy \(9+2^{n-8}=m^2\)

=> \(2^{n-8}=\left(m-3\right)\left(m+3\right)\)

Đặt: \(\hept{\begin{cases}m+3=2^k\\m-3=2^l\end{cases}}\), Nếu k\(\ge\)4, ta có:\(6=\left(m+3\right)-\left(m-3\right)=2^k-2^l\ge2^k-2^{k-1}\ge8\)(vô lý)

Vậy k=1,2,3

thay k=3 thì m=5,n=12

Vậy n=12

12 tháng 2 2017

Cách 2: Đặt \(\left(2^8+2^{11}+2^n\right)=\left(2^a+2^b\right)^2=2^{2a}+2^{a+b+1}+2^{2b}\)

Vai trò của a,b như nhâu nên

Từ đây dễ dàng chọn: 2a=8 => a=4 => b=6

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à