\(^4\)+4 là số nguyên tố

b)n

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

a.

\(n^4+4=n^4+4n^2+4-4n^2\)

\(=\left(n^2+2\right)-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

Mà n4 + 4 là số nguyên tố

Lại có: \(n^2-2n+2< n^2+2n+2\)

\(\Rightarrow n^2-2n+2=1\)

\(\Rightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)

b.

\(n=0\Leftrightarrow n^{1994}+n^{1993}+1=1\) (loại)

\(n=1\Leftrightarrow n^{1994}+n^{1993}+1=1+1+1=3\) (thoả mãn)

\(n>1\Rightarrow\left(n^{1994}+n^{1993}+1\right)⋮\left(n^2+n+1\right)\ge7\)

Vậy n = 1

7 tháng 1 2019

Thanks nhé

NM
17 tháng 8 2021

a.\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

nguyên tố nên thừa số nhỏ hơn là \(n^2-2n+2=1\Leftrightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)thỏa mãn đề bài

b. ta có :\(n^{1994}+n^{1993}+1-\left(n^2+n+1\right)=\left(n^{1992}-1\right)\left(n^2+n\right)\)

mà \(1992⋮3\Rightarrow n^{1992}-1⋮n^3-1⋮n^2+n+1\)

nên \(n^{1994}+n^{1993}+1⋮n^2+n+1\)mà nó là số nguyên tố nên

\(n^2+n+1=1\Leftrightarrow n=0\) ( Do n là số tự nhiên nên n= -1 loại bỏ đi )

16 tháng 8 2015

A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n+ n + 1)

Áp dụng hằng đẳng thức an - b= (a - b). ( an-1 + an-2.b + an-3.b+ ...+a.bn-2 + bn-1)

Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C  (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C

=> n2013 - 1 chia hết cho n+ n + 1

=>  n2;  ( n2013 - 1);  n.(n2013 - 1) ; ( n+ n + 1) đều chia hết n2 + n + 1 

=> A chia hết cho n+ n + 1 hay n+ n + 1 là 1 ước của A

Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1

+) Nếu n+ n + 1 = 1 <=> n+ n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại

+) Nếu n+ n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0 

<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại

Vậy với n = 1 thì A .............

30 tháng 3 2024

A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n+ n + 1)

Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C  (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C

=> n2013 - 1 chia hết cho n+ n + 1

=>  n2;  ( n2013 - 1);  n.(n2013 - 1) ; ( n+ n + 1) đều chia hết n2 + n + 1 

=> A chia hết cho n+ n + 1 hay n+ n + 1 là 1 ước của A

Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1

+) Nếu n+ n + 1 = 1 <=> n+ n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại

+) Nếu n+ n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0 

<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại

Vậy với n = 1 thì A .............

1 tháng 2 2021

bạn fuck boy hơi gấu đó

23 tháng 12 2021

Đặt A=1+n2017+n2018 

*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)

Do đó: A là số nguyên tố

*Nếu: n>1

1+n2017+n2018

 =(n2018-n2)+(n2017-n)+(n2+n+1)

=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)

Vì: n2016 chia hết cho n3

=> n2016-1 chia hết cho n3-1

=> n2016-1  chia hết cho (n2+n+1) 

Mà: 1<n2+n+1<A=> A là số nguyên tố  (k/tm đk đề bài số nguyên dương)

Vậy n=1

14 tháng 8 2018

Ta có : n^4+4
=n^4+4n^2+4-4n^2
=(n^2+2)^2-4n^2
=(n^2-2n^2+2)(n^2+2n^2+2)
={(n-1)^2+1}{(n+1)^2+1} #
lúc này có hai trường hợp xảy ra
*(n-1)^2+1=1-->(n-1)^2=0
--->n-1=0-->n=1
Thay vào # ta được: n^4+1=5(là số nguyên tố )
*(n+1)^2+1=1-->(n+1)^2=0-->n=-1(loại vì n là số tự nhiên
Vậy n=1 thì n^4+4=5 là số nguyên tố

nếu đúng thì k nha

15 tháng 8 2018

Lê Thị Như Quỳnh . Mk k cần nx nhg dù sao cũng cảm ơn!