Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải : gọi số cần tìm là ab (a khác 0; a,b<10)
ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)
vì a+b là số chính phương nên a+b chia hết cho 11
mà 1 lớn hơn hoặc bằng a <10
0 lớn hơn hoặc bằng b<10
= 1 lớn hơn hoặc bằng a+b<20
=a+b=11
ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
vậy có 8 số thỏa mãn đề bài
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
Gọi số đó là ab, số tự nhiên mà khi bình phương lên thành 1 số chính phương bằng ab+ba (đầu bài) là n, ta có:
n2=ab+ba=10a+b+10b+a=(10+1).a+(10+1).b=11a+11b=11(a+b)
=> n2 chia hết cho 11 mà 11 là 1 số nguyên tố nên khi phân tích số n2 thành thừa số nguyên tố thì có mặt thừa số 11. Vậy n=11
Ta có : n2=112=121
=> a+b=121 : 11=11
Vậy ab thuộc {29;38;47;56;65;74;83;92}
Vậy có 8 số thoả mãn đầu bài.
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
đúng ko
gọi số cần tìm là ab,(a khác 0;a,b<10)
ta có:
ab+ba=10a+b+10b+aq=11a+11b=11(a+b)
vì a+b là số chính phương nên a+b chia hết cho 11
mà 1<a<10
0<b<10
=> 1<a+b<20
=>a+b=11
ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
vây có 8 số thỏa mãn đề bài
Gọi số cần tìm là ab
Ta có:a+b=7
và a2+b2=230=>a và b=5
=>Có các cặp số 5 và 4;5 và 3;5 và 2;4 và 3(1)
2 x ab=ab=>20b+2a=10a+b=>19b=8a
Trong các cặp số nêu ở (1),chỉ có 2.19=38=8.5=40
=>a=5;b=2
Vậy số cần tìm là 52
Gọi số cần tìm là ab (có gạch nagng trên đầu)
Ta có : a + b $\ge$≥7
và a2+b2 $\le$≤ 230 => a và b $\le$≤ 5
=> Có các cặp số 5 và 4 ; 5 và 3 ; 5 và 2 ; 4 và 3 (1)
2 x ba $\le$≤ ab => 20b+2a $\le$≤ 10a+b => 19b $\le$≤ 8a
Trong các cặp sô đã nêu ở (1), chỉ có 2 . 19 = 38 $\le$≤ 8 . 5 = 40
=> a = 5 ; b = 2
Vậy số cần tìm là 52
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Ta có:
ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 \(\le\) a < 10
0 \(\le\) b < 10
=> 1 \(\le\)a + b < 20
=> a + b = 11.
Ta có bảng sau :
Vậy có 8 số thỏa mãn đề bài
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Ta có:
ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 $\le$≤ a < 10
0 $\le$≤ b < 10
=> 1 $\le$≤a + b < 20
=> a + b = 11.
Ta có bảng sau :