\(^a\)+ 34=\(|^{ }_{ }b-45|^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

a) Giả sử A,B,C cùng nhận giá trị âm => A.B.C nhận giá trị âm

Mà ta có: A.B.C =  \(\left(-\frac{2}{3}x^2yz^2\right).\left(xy^2z^2\right)\left(-\frac{3}{5}x^3y^3\right)\)

           = \(\left[-\frac{2}{3}\cdot\left(-\frac{3}{5}\right)\right]\left(x^2.x.x^3\right)\left(y.y^2.y^3\right).\left(z^2.z^2\right)\)

      = \(\frac{2}{5}x^6y^6z^4\)nhận giá trị dương => điều giả sử là sai

=> A, V, C không thể cùng nhận giá trị âm

29 tháng 6 2020

b) Ta có: |2x - 4| \(\ge\)\(\forall\)x

 (y + 3)20 \(\ge\)\(\forall\)y

=> -12 - |2x - 4| - (y + 3)20 \(\le\)-12 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-4=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

Vậy MaxM = -12 khi x = 2 và y = -3

28 tháng 2 2020

a) Ta có \(P=x+\sqrt{x}+1\)(đkxđ:\(x\ge0\))

Với \(x\ge0\Rightarrow P=x+\sqrt{x}+1\ge0\)

Vậy P đạt GTNN là 0 khi x=0

b) Ta có \(2^a+7=|b-5|+b-5\)

TH1 \(|b-5|=b-5\)

\(\Rightarrow2^a+7=b-5+b-5\)

\(\Leftrightarrow2^a=2b-17\)(1)

Vì \(2^a\)chẵn mà \(2b-17\)lẻ nên suy ra (1) vô lí

TH2 \(|b-5|=5-b\)

\(\Rightarrow2^a+7=5-b+b-5\)

\(\Leftrightarrow2^a+7=0\Leftrightarrow2^a=-7\)(2)

Vì  \(2^a\)chẵn mà -7 lẻ nên suy ra (2) vô lí

Vậy không có giá trị nào của a và b thỏa mãn \(2^a+7=|b-5|+b-5\)

15 tháng 7 2016

a, \(2.16\ge2^n>4\)

\(\Leftrightarrow2.2^4\ge2^n>2^2\)

\(\Leftrightarrow2^5>2^n>2^2\)

\(\Leftrightarrow5\ge n>2\)

Vậy \(n\in\left\{3;4;5\right\}\)

b, Câu b làm tương tự nhé!

15 tháng 7 2016

a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2

suy ra n=4;3

b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243

suy ra n=5

5 tháng 6 2017

a).

\(2.16=2.2^4=2^5\\ 4=2^2\)

theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)

vì n là số tự nhiên nên : \(n=5;4;3\)

b).

\(9.27=3^2.3^3=3^5\\ 243=3^5\)

theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)

=> n=5

5 tháng 6 2017

Giải:

a)2.16\(\ge\)2n>4

2.24\(\ge\)2n>22

25\(\ge\)2n>22

\(\Rightarrow\)5\(\ge\)n>2

\(\Rightarrow\)n\(\in\){3;4;5}

b)9.27\(\le\)3n\(\le\)243

32.33\(\le\)3n\(\le\)35

35\(\le\)3n\(\le\)35

5\(\le\)n\(\le\)5

\(\Rightarrow\)n=5

26 tháng 8 2017

b = 3 vì mẫu số của hiệu là 15 = 5 x b = 5 x 3 nên a = 4

4/5 - 2/3 = 2/15

26 tháng 8 2017

\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)

\(\Rightarrow\frac{a.b}{5.b}-\frac{2.5}{b.5}=\frac{2}{15}\)

Tìm b: Vì kết quả có mẫu là \(15\Rightarrow5.b=b.5=15\Rightarrow b=15:5=3\) 

Tìm a: \(ab-2.5=2\)thay \(b=3\)ta có: \(a.3-2.5=2\)

                                                                             \(a.3-10=2\)

                                                                             \(a="2+10":3=4\)

Vậy : \(a=3;b=4\)

8 tháng 4 2019

y la b hả bạn

9 tháng 4 2019

pt <=> \(2^a+2^b=2^3.9\Leftrightarrow\frac{2^a}{2^3}+\frac{2^b}{2^3}=9\Leftrightarrow2^{a-3}+2^{b-3}=9\)

Vì 9 là số lẻ nên một trong hai số \(2^{a-3},2^{a-3}\)bằng 1

Th1: \(\hept{\begin{cases}2^{a-3}=1=2^0\\2^{b-3}=8=2^3\end{cases}\Leftrightarrow\hept{\begin{cases}a-3=0\\b-3=3\end{cases}\Leftrightarrow}}\hept{\begin{cases}a=3\\b=6\end{cases}}\)

Th2: ngược lại b=3, a=6

9 tháng 4 2018

Bấm vào câu hỏi tương tự : 

Đề bài hơi khác một chút : | b - 45 |  ( cách làm tương tự ) 

Chúc học tốt !!! 

9 tháng 4 2018

NHận xét: 

- Với \(x\ge0\Rightarrow\left|x\right|+x=2x\)

- Với \(x< 0\Rightarrow\left|x\right|+x=0\)

=> |x| + x luôn chẵn với mọi x thuộc Z

Áp dụng nhận xét trên thì |b - 15| + b - 15 là số chẵn với b - 15 thuộc Z

=> 2a + 37 chẵn => 2a lẻ <=> a = 0

Khi đó |b - 15| + b - 15 = 38

- Nếu b < 15, ta có: -(b - 15) + b - 15 = 38 <=> 0 = 38 (loại)

- Nếu b \(\ge\) 15, ta có: b - 15 + b - 15 = 38 <=> 2b - 30 = 38 <=> b = 34 (thỏa mãn)

Vậy a = 0, b = 34