Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử A,B,C cùng nhận giá trị âm => A.B.C nhận giá trị âm
Mà ta có: A.B.C = \(\left(-\frac{2}{3}x^2yz^2\right).\left(xy^2z^2\right)\left(-\frac{3}{5}x^3y^3\right)\)
= \(\left[-\frac{2}{3}\cdot\left(-\frac{3}{5}\right)\right]\left(x^2.x.x^3\right)\left(y.y^2.y^3\right).\left(z^2.z^2\right)\)
= \(\frac{2}{5}x^6y^6z^4\)nhận giá trị dương => điều giả sử là sai
=> A, V, C không thể cùng nhận giá trị âm
b) Ta có: |2x - 4| \(\ge\)0 \(\forall\)x
(y + 3)20 \(\ge\)0 \(\forall\)y
=> -12 - |2x - 4| - (y + 3)20 \(\le\)-12 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-4=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
Vậy MaxM = -12 khi x = 2 và y = -3
a) Ta có \(P=x+\sqrt{x}+1\)(đkxđ:\(x\ge0\))
Với \(x\ge0\Rightarrow P=x+\sqrt{x}+1\ge0\)
Vậy P đạt GTNN là 0 khi x=0
b) Ta có \(2^a+7=|b-5|+b-5\)
TH1 \(|b-5|=b-5\)
\(\Rightarrow2^a+7=b-5+b-5\)
\(\Leftrightarrow2^a=2b-17\)(1)
Vì \(2^a\)chẵn mà \(2b-17\)lẻ nên suy ra (1) vô lí
TH2 \(|b-5|=5-b\)
\(\Rightarrow2^a+7=5-b+b-5\)
\(\Leftrightarrow2^a+7=0\Leftrightarrow2^a=-7\)(2)
Vì \(2^a\)chẵn mà -7 lẻ nên suy ra (2) vô lí
Vậy không có giá trị nào của a và b thỏa mãn \(2^a+7=|b-5|+b-5\)
a, \(2.16\ge2^n>4\)
\(\Leftrightarrow2.2^4\ge2^n>2^2\)
\(\Leftrightarrow2^5>2^n>2^2\)
\(\Leftrightarrow5\ge n>2\)
Vậy \(n\in\left\{3;4;5\right\}\)
b, Câu b làm tương tự nhé!
a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2
suy ra n=4;3
b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243
suy ra n=5
a).
\(2.16=2.2^4=2^5\\ 4=2^2\)
theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)
vì n là số tự nhiên nên : \(n=5;4;3\)
b).
\(9.27=3^2.3^3=3^5\\ 243=3^5\)
theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)
=> n=5
Giải:
a)2.16\(\ge\)2n>4
2.24\(\ge\)2n>22
25\(\ge\)2n>22
\(\Rightarrow\)5\(\ge\)n>2
\(\Rightarrow\)n\(\in\){3;4;5}
b)9.27\(\le\)3n\(\le\)243
32.33\(\le\)3n\(\le\)35
35\(\le\)3n\(\le\)35
5\(\le\)n\(\le\)5
\(\Rightarrow\)n=5
b = 3 vì mẫu số của hiệu là 15 = 5 x b = 5 x 3 nên a = 4
4/5 - 2/3 = 2/15
\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{a.b}{5.b}-\frac{2.5}{b.5}=\frac{2}{15}\)
Tìm b: Vì kết quả có mẫu là \(15\Rightarrow5.b=b.5=15\Rightarrow b=15:5=3\)
Tìm a: \(ab-2.5=2\)thay \(b=3\)ta có: \(a.3-2.5=2\)
\(a.3-10=2\)
\(a="2+10":3=4\)
Vậy : \(a=3;b=4\)
pt <=> \(2^a+2^b=2^3.9\Leftrightarrow\frac{2^a}{2^3}+\frac{2^b}{2^3}=9\Leftrightarrow2^{a-3}+2^{b-3}=9\)
Vì 9 là số lẻ nên một trong hai số \(2^{a-3},2^{a-3}\)bằng 1
Th1: \(\hept{\begin{cases}2^{a-3}=1=2^0\\2^{b-3}=8=2^3\end{cases}\Leftrightarrow\hept{\begin{cases}a-3=0\\b-3=3\end{cases}\Leftrightarrow}}\hept{\begin{cases}a=3\\b=6\end{cases}}\)
Th2: ngược lại b=3, a=6
Bấm vào câu hỏi tương tự :
Đề bài hơi khác một chút : | b - 45 | ( cách làm tương tự )
Chúc học tốt !!!
NHận xét:
- Với \(x\ge0\Rightarrow\left|x\right|+x=2x\)
- Với \(x< 0\Rightarrow\left|x\right|+x=0\)
=> |x| + x luôn chẵn với mọi x thuộc Z
Áp dụng nhận xét trên thì |b - 15| + b - 15 là số chẵn với b - 15 thuộc Z
=> 2a + 37 chẵn => 2a lẻ <=> a = 0
Khi đó |b - 15| + b - 15 = 38
- Nếu b < 15, ta có: -(b - 15) + b - 15 = 38 <=> 0 = 38 (loại)
- Nếu b \(\ge\) 15, ta có: b - 15 + b - 15 = 38 <=> 2b - 30 = 38 <=> b = 34 (thỏa mãn)
Vậy a = 0, b = 34