Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đề thế này à bạn:
\(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
Mình nghĩ bài này lớp 9.

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)
\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)
\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)
có \((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)
\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)
dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

ta có\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2};\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2};\frac{z}{\frac{1}{2}-z-3}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)