Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x,y\inℚ;x,y\ne0\)nên đặt \(x=\frac{a}{b},y=\frac{c}{d}\)trong đó \(a,b,c,d\inℤ;a,b\ne0;c,d>0\)và \(\left(a;b\right)=\left(c;d\right)=1\)
Ta có:\(x+y=\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\inℤ\)
\(\Rightarrow ab+bc⋮bd\)
\(\Rightarrow\hept{\begin{cases}ad+bc⋮b\\ad+bc⋮d\end{cases}}\Rightarrow\hept{\begin{cases}d⋮b\\b⋮d\end{cases}}\)
\(\Rightarrow b=d\left(1\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Lại có:\(\frac{1}{x}+\frac{1}{y}=\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}\inℤ\)
\(\Rightarrow bc+ad⋮ac\)
\(\Rightarrow\hept{\begin{cases}bc+ad⋮a\\bc+ad⋮c\end{cases}}\Rightarrow\hept{\begin{cases}c⋮a\\a⋮c\end{cases}}\)
\(\Rightarrow a=c\left(2\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{a}{b}\in\left\{\frac{c}{d},-\frac{c}{d}\right\}\Rightarrow x\in\left\{y,-y\right\}\)
Với \(x=y=\frac{a}{b}\)thì khi đó:
\(x+y=\frac{2a}{b}\inℤ\Rightarrow2⋮b\Rightarrow b\in\left\{1;-1;2;-2\right\}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{2b}{a}\Rightarrow2⋮a\Rightarrow a\in\left\{1;-1;-2;2\right\}\)
\(\Rightarrow x=y=\frac{a}{b}=\pm1=\pm2=\pm\frac{1}{2}\)
Nếu x=-y thì:
\(x+y=0\Rightarrow\frac{1}{x}+\frac{1}{y}=0\left(L\right)\)
Vậy các cặp số \(\left(x;y\right)\)cần tìm là:\(\left(1;1\right);\left(2;2\right);\left(-1;-1\right);\left(-2;-2\right);\left(-\frac{1}{2};-\frac{1}{2}\right);\left(\frac{1}{2};\frac{1}{2}\right)\)
Dòng đầu tiên chưa chặt chẽ. Giải thích: c, d >0?
Trường hợp 2 tại sao loại ? x=-y thì x+y=0 là số nguyên và 1/x +1/y cũng là số nguyên.
Lần sau làm bài nhớ khảo lại bài nhé!:)
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!