K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

\(x^2+x-p=0\\ \Leftrightarrow x\left(x+1\right)=p\)

\(\Rightarrow p⋮2\)

Mà p là SNT \(\Rightarrow p=2\)

\(\Rightarrow x^2+x=2\\ \Rightarrow x^2+x-2=0\\ \Leftrightarrow\left(x^2-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

21 tháng 12 2017

x2 + x - p = 0
=> x. ( x + 1 ) = p

Suy ra x và x + 1 là các ước của p
Mà x và x + 1 là 2 số nguyên liên tiếp và p là số nguyên tố nên
x = 1 hoặc x + 1 = 1
+) Với x = 1 thì x + 1 = 2
=> p = 1 . 2 = 2 ( thỏa mãn )
+) Với x + 1 = 1 thì x = 0
=> p = 0 . 1 = 0 ( không thỏa mãn )

Vậy x = 1

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

x2 + x - p = 0

=> x. ( x + 1 ) = p

Suy ra x và x + 1 là các ước của p

Mà x và x + 1 là 2 số nguyên liên tiếp và p là số nguyên tố nên

x = 1 hoặc x + 1 = 1

+) Với x = 1 thì x + 1 = 2 

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

14 tháng 8 2020

Đặt:    \(5p+1=a^3;a\inℕ^∗\)

=>     \(5p=a^3-1\)

<=>   \(5p=\left(a-1\right)\left(a^2+a+1\right)\)

<=>    \(a-1;a^2+a+1\)   đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)

Do:   \(a\inℕ^∗\)    =>   \(a-1< a^2+a+1\)    Do: p là SNT  =>  \(1< 5p\)

=> Ta thực tế chỉ phải xét 3 trường hợp:

TH1:    \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)

=>    \(a=2\)  

=>    \(5p=2^2+2+1=4+2+1=7\)

=>    \(p=\frac{7}{5}\)     => Loại do p là SNT.

TH2:   \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)

=>    \(a=6\)

=>    \(p=6^2+6+1=43\)

THỬ LẠI:     \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)

TH3:    \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)

=>    \(a^2+a=4\)

=>   Thử \(a=1;a=2\)đều loại. Và \(a>2\)  thì  \(a^2+a>4\)     (LOẠI)

a = 0 cũng loại do a thuộc N*.

Vậy duy nhất có nghiệm      \(p=43\)    là thỏa mãn điều kiện.

9 tháng 8 2023

Đặt \(3p+4=k^2\left(k\ge4\right)\)

\(\Leftrightarrow k^2-4=3p\)

\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)

Ta thấy \(0< k-2< k+2\) nên có 2TH:

TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.

TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.

Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.