Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thiếu điều kiện là bằng bao nhiêu chứ ghi thế này thì x nào chả đc
Vì \(\left|2x-6\right|\ge0\forall x;\left|2x-6\right|-4\ge-4\)
\(\Rightarrow\frac{1}{\left|2x-6\right|-4}\le\frac{1}{-4}\Rightarrow\frac{2019}{\left|2x-6\right|-4}\ge\frac{2019}{-4}\Rightarrow A\ge\frac{2019}{-4}\)
Dấu ''='' xảy ra <=> x = 3
Vậy GTNN A là -2019/4 <=> x = 3
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
Ta có: \(A=\dfrac{3x-2}{x+2}=\dfrac{3\left(x+2\right)-4}{x+2}=\dfrac{3\left(x+2\right)}{x+2}-\dfrac{4}{x+2}=3-\dfrac{4}{x+2}\)
Để A mang giá trị nguyên khi
\(4⋮x+2\) hay \(x+2\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(x+2=-1\Rightarrow x=\left(-1\right)-2\Rightarrow x=-3\)
\(x+2=1\Rightarrow x=1-2\Rightarrow x=-1\)
\(x+2=-2\Rightarrow x=\left(-2\right)-2\Rightarrow x=-4\)
\(x+2=2\Rightarrow x=2-2\Rightarrow x=0\)
\(x+2=-4\Rightarrow x=\left(-4\right)-2\Rightarrow x=-6\)
\(x+2=4\Rightarrow x=4-2\Rightarrow x=2\)
Vậy để A là số nguyên khi \(x\in\left\{-3;-1;-4;0;-6;2\right\}\)
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)