Tìm tất cả các số nguyên tố p để 2p + p2 còng là số nguyên tố
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

19 tháng 12 2023

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố

14 tháng 4 2021

Với p = 2 ta có p2 + 2p = 12 không là số nguyên tố

Với p = 2 ta có p2 + 2p = 17 là nguyên tố

Với  p > 3 ta có p2 + 2p = ( p2 - 1) + ( 2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 - 1 chia hết cho 3 và 2p + 1 chia hết cho 3 . Do đó p2 + 2p là hợp số

Vậy với p  3 thì p2 + 2p là số nguyên tố

Học vui vẻ ^_^

4 tháng 7 2018

Trả lời

Trường hợp p = 2 thì \(2^p\) + \(p^2\) = 8 là hợp số. 
Trường hợp p = 3 thì \(2^p+p^2\) = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó \(p^2\) - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên \(2^p\) + 1 chia hết cho 3. Thành thử \(\left(2^p+1\right)+\left(p^2-1\right)\) = \(2^p+p^2\) chia hết cho 3; \(\Rightarrow2^p+p^2\)là hợp số. 
Vậy p = 3. 

4 tháng 4 2015

a) số nguyên tố nhỏ nhất là 2

 

3 tháng 9 2015

a) Vì 132 là số chẵn =>132 là tổng của 3 số nguyên tố =>1 trong 3 số phải la số chẵn => số chẵn đó bằng 2 mà là số ntố nhỏ nhất nên số nhỏ nhất đó là 2.

c)xét trường hợp p=2=> p+10=12 là hợp số loại

 Xét trường hợp p= 3=> p+10= 13;p+20=23 đều là hợp số.

Xét trường hợp p>3 => p có 1 trong 2 dạng 3k+1;3k-1

   với p= 3k +1=> p+20= 3k+21 chia hết cho 3

   với p=3k-1=> p+10= 3k+9 chia hết cho 3

vậy p=3 thì p+10;p+20 đều là số ntố.

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)

23 tháng 10 2015

a) n=1

b)n=0

tick cho mình nha

23 tháng 10 2015

a) n = 1

b) n = 0