K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

n+1930, n+2539 là số chính phương  

Khi đó sẽ tồn tại số nguyên a, b sao cho:

\(n+1930=a^2,n+2539=b^2\)

Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)

=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)

\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)

Vì a, b nguyên nên a-b và a+b nguyên 

Em kẻ bảng làm tiếp nhé

2 tháng 8 2023

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

30 tháng 6 2018

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v

22 tháng 6 2017

Đặt n-2= a^3; n-5=b^3  (a,b thuộc Z)

Ta có

\(a^3-b^3=\left(n-2\right)-\left(n-5\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=3\)

Ta thấy \(a^2+ab+b^2\ge0\)nên

TA CÓ BẢNG :

     a-ba2+ab+b2         a     b     
          1               3              
           3                1   
                           
                            
28 tháng 6 2021

Có \(A=n^2\left(n^2+n+1\right)\)

Để A là scp \(\Leftrightarrow n^2+n+1\) là scp

Đặt \(a^2=n^2+n+1\) (\(a\in Z\))

\(\Leftrightarrow4a^2=4n^2+4n+4\)

\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)

Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)

TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)

TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)

TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)

Vậy n=0 và n=-1 thì A là scp

28 tháng 6 2021

Cảm ơn nhìu ạ~