\(\frac{2n+3}{7}\) là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2015

cậu hỏi hay quá ta

 

21 tháng 2 2017

\(\frac{2n+3}{7}\)Có giá trị là nguyên khi

\(2n+3⋮7\)

=>2n+3+4-4\(⋮\)7

=> 2n:7 du 4

=> n:7 dư 2

=> n=7k+2

Vậy n=7k+2(k\(\in\)Z)

a) Để \(\frac{12}{3n-1}\) là số nguyên thì \(12⋮3n-1\)

Mà \(Ư\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Hay \(3n-1\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Với điều kiện \(n\inℤ\) ; Ta có bảng sau:

3n - 1-12-6-4-3-2-11234612
n\(\frac{-11}{3}\)\(\frac{-5}{3}\)\(-1\)\(\frac{-2}{3}\)\(\frac{-1}{3}\)\(0\)\(\frac{2}{3}\)\(1\)\(\frac{4}{3}\)\(\frac{5}{3}\)\(\frac{7}{3}\)\(\frac{13}{3}\)
ĐCĐKloạiloạiTMloạiloạiTMloạiTMloạiloạiloạiloại

Vậy \(n\in\left\{-1;0;1\right\}\)

b) Để \(\frac{2n+3}{7}\)là số nguyên thì \(2n+3⋮7\) 

Mà \(B\left(7\right)\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)

Hay \(2n+3\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)

Với điều kiện \(n\inℤ\) ; Ta có bảng sau:

2n + 3-35-28-21-14-7714212835...
n\(-19\)\(\frac{-31}{2}\)\(-12\)\(\frac{-17}{2}\)\(-5\)\(2\)\(\frac{11}{2}\)\(9\)\(\frac{25}{2}\)\(16\)...
ĐCĐKTMloạiTMloạiTMTMloạiTMloạiTM...

Vậy \(n\in\left\{-19;-12;-5;2;9;16;...\right\}\)

c) Mik chx lm đc, sr, bn thông cảm!

20 tháng 3 2022

giúp mk câu này nha gấp lắm

18 tháng 2 2020

Để phân số \(\frac{2n+3}{7}\) là số nguyên thì:\(2n+3:7\)

 \(​​\implies\) \(2n+3=7k\) (k \(\in\) \(Z\))                                                                                                                                                                \(\implies\) \(2n=7k-3\) (k \(\in\)\(Z\) )

  \(\implies\) \(n=\frac{7k-3}{2}\) (k \(\in\) \(Z\)

  Vậy với mọi n có dạng \(\frac{7k-3}{2}\) (k \(\in\) \(Z\) ) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}\)=\(\frac{n^2-3}{n-2}\)=\(\frac{2^2-4+7}{n-2}\)=\(\frac{\left(n-2\right)^2+7}{n-2}\)=\(\frac{\left(n-2\right)^2}{n-2}\)+\(\frac{7}{n-2}\)=n-2+\(\frac{7}{n-2}\)

n-2 là số nguyên => \(\frac{7}{n-2}\)cũng là số nguyên =>n-2 thuộc Ư(7)={1;7;-1;-7}

=> n=3;9;1;-5

Đúng thì k cho mình

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}=\frac{-n^2+3}{n-2}=\frac{-\left(n^2-2^2\right)-1}{n-2}=\frac{-\left(n-2\right)\left(n+2\right)}{n-2}-\frac{1}{n-2}=-\left(n+2\right)-\frac{1}{n-2}\)

         Để PT trên là số nguyên thì:\(1⋮\left(n-2\right)\)hay \(\left(n-2\right)\inƯ\left(1\right)\)

                           Ư(1) là:[1,-1]

Do đó ta được bảng sau:

                 

n-2-11
n13

                  Vậy để PT nguyên thì n=1;3

17 tháng 12 2018

toán tuổi thơ 2 số 190

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

10 tháng 4 2017

n=(-7;-1;1;7)

10 tháng 4 2017

A= 6n/6n + 42/6n

A= 1 + 42/6n

Muốn A nguyên thì 42/6n phải nguyên

Suy ra 6n thuộc ước của 42

Suy ra n thuộc 2,-2,7,-7

22 tháng 3 2019

\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1

đúng k