Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n \(\ge\) 3 thì n! sẽ chia hết cho 1;2;3;... Ta có:
3m - n! = 1
3(3m-1 - 1.2...) =1 => vô lí vì 1 không chia hết cho 3
=> n <3.
Nếu n = 2 thì 3m - 2! = 1
3m - 2 = 1
3m =3
=> m = 1.
Nếu n =1 thì 3m - 1! = 1
3m - 1 =1
3m =2 => vô lí => loại
Vậy n = 2; m =1.
b) Nếu n \(\ge\)3 thì n! chia hết cho 1;2;3;... Ta có:
3m - n! = 2
3(3m-1 - 1.2...) = 2 => vô lí (vì 2 không chia hết cho 3) => n < 3
Nếu n = 2 thì 3m - 2! = 2
3m - 2 = 2
3m = 4 => vô lí => loại
Nếu n = 1 thì 3m - 1! = 2
3m - 1 = 2
3m = 3
=> m = 1.
Vậy n = 1; m = 1
a) 45 chia hết cho 9 nên (4m + 9n) chia hết cho 9 mà 9n chia hết cho 9
=> 4m chia hết cho 9 => m chia hết cho 9
Mà m nguyên dương nên 0 < m và 4m < 45
=> m = 9 => 36 + 9n = 45 => n = 1
Vậy m = 9; n = 1
b) (3m + 9n) chia hết cho 3
Mà 29 không chia hết cho nên không tồn tại số nguyên dương m;n để 3m + 9n = 29
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
A,m=2,3,4,.....
n=8,26,80,.......
B,n=7,25,79,........
Mình cần lời giải chi tiết cơ