K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Đặt \(a+7=x^2;a+23=y^2\left(x,y\in Z\right)\)

Ta có:\(x^2-y^2=\left(a+7\right)-\left(a+23\right)=16\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)=16\)

Mình làm mẫu 1 trường hợp các trường hợp còn lại bạn tự làm:

\(x-y=4;x+y=4\Rightarrow2x=8\Rightarrow x=4\Rightarrow y=0\) ( trường hợp này loại )

10 tháng 5 2020

giải thích rõ đc ko

NV
30 tháng 3 2021

1. 

\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)

\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số

2.

\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)

\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)

\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)

\(\Leftrightarrow...\)

30 tháng 3 2021

Em xin cách làm bài 1 ạ 

14 tháng 1 2017

đặt x + 56 = a2

     y + 113 = b2   ( a;b thuộc N ) -

=> b- a2 = 113 - 56 = 57

=> ( b - a ).( b + a ) = 57 = 57 . 1 = 1 . 57 = 17 . 3 = 3.17

rồi bạn lắp vào x, y và giải ra

14 tháng 1 2017

tổng = 736 

9 tháng 3 2022

-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)

\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)

\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)

\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)

\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)

-Vì \(3a-2b< 3a+2b\)

\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)

-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.