Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có x+4y=3(1)
lại có −xcăn3=(y−2) căn3⇒−x=y−2⇒x=2−y(2)
thế 2 vào 1
(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3
x=2−1/3=5/3
Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)


a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

\(x^2+y^2-xy-x-y< \frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y< 1\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2< 3\)
Đến đây dễ rồi
Cách lớp 8 nhé!

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)
\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)
\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)
có \((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)
\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)
dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)
\(x+4y-x\sqrt3=\left(y-2\right)\sqrt3+3\)
=>\(\begin{cases}-x=y-2\\ x+4y=3\end{cases}\Rightarrow\begin{cases}x=-y+2\\ -y+2+4y=3\end{cases}\)
=>\(\begin{cases}x=-y+2\\ 3y=1\end{cases}\Rightarrow\begin{cases}y=\frac13\\ x=-\frac13+2=2-\frac13=\frac53\end{cases}\)