K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2021

\(sinx-\sqrt{3}cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{-\dfrac{5\pi}{6};\dfrac{\pi}{2}\right\}\)

24 tháng 6 2017

b) Ta có:

\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)

(Áp dụng BĐT Bunhiacopxki)

\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)

\(\Rightarrow y\le\sqrt[4]{2}\)

Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)

Hàm số không có giá trị nhỏ nhất.

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

91.

PT $\sin x=a$ có nghiệm khi $\max (\sin x)\geq a\geq \min (\sin x)$

$\Leftrightarrow 1\geq a\geq -1$

Hay $a\in [-1;1]$

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

93.

$\sin (\pi\cos x)=1$

$\Rightarrow \pi\cos x=\pi (\frac{1}{2}+2k)$

$\Leftrightarrow \cos x=2k+\frac{1}{2}$ (trong đó $k$ là số nguyên)

Vì $\cos x\in [-1;1]$ nên $2k+\frac{1}{2}\in [-1;1]$

Vì $k$ nguyên nên $k=0$

$\Rightarrow \cos x=2k+\frac{1}{2}=\frac{1}{2}$

$\Rightarrow x=\pm \frac{\pi}{3}+2n\pi$ với $n$ nguyên.

NV
9 tháng 10 2019

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=\frac{2m+1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{2m+1}{2}\)

Do \(x\in\left(-\frac{\pi}{6};\frac{5\pi}{6}\right)\Rightarrow x+\frac{\pi}{6}\in\left(0;\pi\right)\)

\(\Rightarrow0< sin\left(x+\frac{\pi}{6}\right)\le1\)

\(\Rightarrow0< \frac{2m+1}{2}\le1\)

\(\Rightarrow-\frac{1}{2}< m\le\frac{1}{2}\)

11 tháng 10 2019

cái chỗ x+pi/3∈(o;pi )là sao bạn mình ko hiểu

14 tháng 9 2020

Cho mk hỏi sao lại là 2017 ạ ko phải 2018 sao ạ?

NV
10 tháng 9 2020

72.

\(\Leftrightarrow sinx=m+1\)

Do \(-1\le sinx\le1\) nên pt có nghiệm khi và chỉ khi:

\(-1\le m+1\le1\)

\(\Leftrightarrow-2\le m\le0\)

73.

\(\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)

NV
20 tháng 12 2020

Đặt \(t=tan\dfrac{x}{2}\Rightarrow\left\{{}\begin{matrix}t\in\left[0;1\right]\\sinx=\dfrac{2t}{1+t^2}\\cosx=\dfrac{1-t^2}{1+t^2}\end{matrix}\right.\)

Pt trở thành: \(\dfrac{m.2t}{1+t^2}+\dfrac{1-t^2}{1+t^2}=1\)

\(\Leftrightarrow2mt+1-t^2=1+t^2\)

\(\Leftrightarrow2mt-2t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=m\end{matrix}\right.\)

\(\Rightarrow\) Để pt có 2 nghiệm thuộc đoạn đã cho thì \(0< m\le1\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2020

Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))

17 tháng 8 2019

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 8 2019

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ