K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 12 2020

\(\Leftrightarrow\left(x-\frac{2}{x}\right)^2-4\left(x-\frac{2}{x}\right)+m+3=0\)

Đặt \(x-\frac{2}{x}=t\Rightarrow t^2-4t+m+3=0\) (1)

Pt đã cho có đúng 2 nghiệm lớn hơn 1 khi và chỉ khi (1) có 2 nghiệm \(t>-1\)

\(\Leftrightarrow f\left(t\right)=t^2-4t+3\) cắt \(y=-m\) tại 2 điểm có hoành độ lớn hơn -1

\(\Rightarrow-1< -m\le8\Rightarrow-8\le m< 1\)

14 tháng 1 2020

để pt có 2 nghiệm phân biệt thì: đenta > 0 

mà ddeenta = m2 - 6m - 7 > 0  

giải ra ta đc: m<-1 hay m>7 (1)

áp dụng hệ thức vi-et đc x1 + x2 = m-1  và x1.x2= m+2 

kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3

bđt trên (=) (x12+x22)/x12.x22  - 1  > 0 

thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2   và m<-7/16

kết hợp vs (1) =) m<-1 và m khác -2

NM
21 tháng 12 2020

ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)

Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1

th1: (1) có nghiệm kép

\(\Rightarrow m=\frac{3}{2}\)

th2: (1) có 1 nghiệm x=1 

\(\Rightarrow m=-3\)

21 tháng 3 2022

cíu!!!

Trường hợp 1: \(m\ne\pm2\)

Để phương trình có đúng hai nghiệm phân biệt thì phương trình này sẽ có hai nghiệm trái dấu

=>\(m^2-4< 0\)

hay -2<m<2

Trường hợp 2: m=2

Pt sẽ là 1=0(vô lý)

Trường hợp 3: m=-2

=>-4x2+1=0(nhận)

Vậy: -2<=m<2