\(^{x^2-2x+\sqrt{-x^2+2x}-3+m=0}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

NV
2 tháng 5 2019

ĐKXĐ: \(0\le x\le2\)

Đặt \(\sqrt{-x^2+2x}=a\Rightarrow0\le a\le1\)

BPT trở thành: \(-a^2+a-3+m\le0\)

\(\Rightarrow a^2-a+3\ge m\) (1)

Để (1) có nghiệm \(\Rightarrow m\le\max\limits_{\left[0;1\right]}\left(a^2-a+3\right)\)

Đặt \(f\left(a\right)=a^2-a+3\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\); \(f\left(\frac{1}{2}\right)=\frac{11}{4}\)

\(\Rightarrow\max\limits_{\left[0;1\right]}f\left(a\right)=3\Rightarrow m\le3\)