K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

7 tháng 11 2017

Đáp án D

Ta có log0,02[log2 (3x + 1)] > log0,02 m

<=> m > log2 (3x + 1) (vì cơ số = 0,02 < 1)

Xét hàm số f(x) = log2 (3x + 1) trên  - ∞ ; 0

có  f ' x = 3 x . ln 3 3 x + 1 ln 2 > 0 ;   ∀ x ∈ - ∞ ; 0

Suy ra f(x) là hàm số đồng biến trên  - ∞ ; 0

⇒ m a x - ∞ ; 0 f x = f 0 = 1

Vậy để bất phương trình có nghiệm  ∀ x ∈ - ∞ ; 0 ⇒ m ≥ 1 .

22 tháng 5 2017

Đáp án C

Phương pháp:

phương trình trở thành

=> Hàm số đồng biến trên khoảng [2;+∞)

Để phương trình (*) có nghiệm thì 2m ≥ 6 ⇔ m ≥ 3

9 tháng 8 2019

Đáp án C.

Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m  

Đặt  t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )  

Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m  

Với  f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0  với  t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6  

Do đó theo bài ra để bất phương trình có nghiệm  x ≥ 1  thì m ≤ min   f ( t ) ⇔ m ≤ 6  

6 tháng 9 2017

Chọn B

24 tháng 6 2017

Đáp án D

BPT <=> 23x + (m – 1)3x + m – 1 > 0

<=> 23x – 3x  – 1 + m(3x + 1) > 0

⇔ m > 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ (*).

Xét hàm số  f x = 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ , ta có

f ' x = 8 x ln   3 - ln   8 . 3 x - ln   8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .

Suy ra f(x) là hàm số nghịch biến trên  ℝ .

Mà  lim x → - ∞ f x = 1 , do đó

m i n x ∈ ℝ f x = lim x → - ∞ f x = 1 .

Vậy (*)  ⇔ m ≥ m i n x ∈ ℝ f x = 1 ⇒ m ≥ 1  là giá trị cần tìm.

18 tháng 5 2019

Chọn C.

27 tháng 12 2019