Tìm tất cả các giá trị thực của tham số m để phương trình 2 sin...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Đáp án D

Đặt t = sin x , vì x ∈ − π 2 ; 0 ⇒ t ∈ − 1 ; 0 .Khi đó, phương trình đã cho trở thành:

2 t 2 − 2 m + t t + 2 m − 1 = 0 ⇔ 2 t 2 − t − 1 − 2 m t − 1 = 0 ⇔ t − 1 2 t + 1 − 2 m = 0 ⇔ t = 2 m − 1 2 .

Mặt khác t ∈ − 1 ; 0 → − 1 < 2 m − 1 2 < 0 ⇔ − 2 < 2 m − 1 < 0 ⇔ m ∈ − 1 2 ; 1 2 .  

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

27 tháng 2 2016

với \(m=0\) : PT \(\left(1\right)\Leftrightarrow\)     \(-2x+1=0\)    \(\Leftrightarrow x=\frac{1}{2}\in\left(0;1\right)\)

với \(m\ne0\) : PT \(\left(1\right)\) có đúng 1 nghiệm \(\in\left(0;1\right)\)

                           \(\Leftrightarrow f\left(0\right).f\left(1\right)<0\)

( để ý: \(\Delta'=\left(m+1\right)^2-m=\)\(m^2+m+1>0,\text{∀}x\in R\))

                           \(\Leftrightarrow m-2\left(m+1\right)+1<0\) \(\Leftrightarrow m>-1\)

vậy \(m>-2\) là kết quả cần tìm

27 tháng 2 2016

với m=0m=0 : PT (1)⇔(1)⇔     −2x+1=0−2x+1=0    ⇔x=12∈(0;1)⇔x=12∈(0;1)

với m≠0m≠0 : PT (1)(1) có đúng 1 nghiệm ∈(0;1)∈(0;1)

                           ⇔f(0).f(1)<0⇔f(0).f(1)<0

( để ý: Δ′=(m+1)2−m=Δ′=(m+1)2−m=m2+m+1>0,∀x∈Rm2+m+1>0,∀x∈R)

                           ⇔m−2(m+1)+1<0⇔m−2(m+1)+1<0 ⇔m>−1⇔m>−1

vậy m>−2m>−2 là kết quả cần tìm

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

20 tháng 9 2015

hoc24.net giúp em với

28 tháng 4 2016

Chào bạn, bạn hãy theo dõi bài giải của mình nhé!

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(=>A=1-\frac{1}{2^{100}}\)

Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)

\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)

\(=>0< A< 1\)

Chúc bạn học tốt!

28 tháng 4 2016

Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)

2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)

2A=1+1/2+1/2^2+...+1/2^99

2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1-1/2^100<1

Vậy A<1

Cậu tự KL nhé