K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\y=2x-m\end{matrix}\right.\)  <=> \(\left\{{}\begin{matrix}3x+2(2x-m)=10\\y=2x-m\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}3x+4x-2m=10\\y=2x-m\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}7x=10+2m\\y=2x-m\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{2m+10}{7}\\y=\dfrac{4m+20}{7}-m\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{2m-10}{7}\\y=\dfrac{20-3m}{7}\end{matrix}\right.\)

Thay x và y vừa tìm dc vào điều kiện X>0 và Y<0

\(\dfrac{2m-10}{7}\)>0 => 2m-10>0  <=>   m>5

\(\dfrac{20-3m}{7}\)<0 => 20-3m>0   <=> m<20/3 

Vậy ...

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

18 tháng 3 2018

Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.

Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.

Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.

Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...

18 tháng 3 2018

Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)

Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)

Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)

\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)

\(\Leftrightarrow6mx=-11\)

\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)

Để hệ phương trình có nghiệm duy nhất  (x;y)  với x +y > 0  khi PT (4) có nghiệm duy nhất

\(\Leftrightarrow m\ne0\)

7 tháng 1 2021

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

7 tháng 1 2021

Thanks bạn nhiều :))

 

\(\Delta=\left(2m+4\right)^2-4\left(3m+2\right)\)

\(=4m^2+16m+16-12m-8\)

\(=4m^2+4m+8\)

\(=\left(2m+1\right)^2+7>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=3m+2\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\-2x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2m+1\\x_1+x_2=2m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2}{3}m+\dfrac{1}{3}\\x_2=2m+4-\dfrac{2}{3}m-\dfrac{1}{3}=\dfrac{4}{3}m+\dfrac{11}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=3m+2\)

nên \(\left(\dfrac{2}{3}m+\dfrac{1}{3}\right)\left(\dfrac{4}{3}m+\dfrac{11}{3}\right)=3m+2\)

\(\Leftrightarrow m^2\cdot\dfrac{8}{9}+\dfrac{22}{9}m+\dfrac{4}{9}m+\dfrac{11}{9}=3m+2\)

\(\Leftrightarrow m^2\cdot\dfrac{8}{9}-\dfrac{1}{9}m-\dfrac{7}{9}=0\)

\(\Leftrightarrow8m^2-m-7=0\)

\(\Leftrightarrow\left(m-1\right)\left(8m+7\right)=0\)

=>m=1 hoặc m=-7/8

Δ=(2m-1)^2-4(2m-2)

=4m^2-4m+1-8m+8=(2m-3)^2

Để pt có 2 nghiệm pb thì 2m-3<>0

=>m<>3/2

x1^4+x2^4=17

=>(x1^2+x2^2)^2-2(x1x2)^2=17

=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17

=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17

=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17

Đặt 4m^2-8m+4=a

Ta sẽ có (a+1)^2-2a-17=0

=>a^2-16=0

=>a=4 hoặc a=-4(loại)

=>4m^2-8m=0

=>m=0 hoặc m=2