Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) ∀x ∈ R
ta thấy \(2x^2-3x+2\) (*)vô nghiệm => * luôn dương ( cx dấu vs a)
\(\left\{{}\begin{matrix}\dfrac{x^2+5x+m}{2x^2-3x+2}+1\ge0\\\dfrac{x^2+5x+m}{2x^2-3x+2}-7< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^{2^{ }}+2x+m+2\ge0\\-13x^2+26x+m-14< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\\\left[{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\end{matrix}\right.\)
.....
tới đây bạn tự thế số vào làm tiếp nhé
Đ\Á :[\(\dfrac{-5}{3}\);1)
\(x^2-5x+1=m-2\sqrt{6+5x-x^2}\) (đk: \(x\in\left[-1;6\right]\))
\(\Leftrightarrow7-\left(6+5x-x^2\right)=m-2\sqrt{6+5x-x^2}\)
\(Đặt \) \(a=\sqrt{6+5x-x^2}\left(a\ge0\right)\)
(bình phương cái vừa đặt lên, tìm được \(\Delta_x=49-4a^2\) nên với mỗi \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\) sẽ có 2 nghiệm x phân biệt)
pttt: \(7-a^2=m-2a\)
\(\Leftrightarrow a^2-2a-7=-m\) (*)
BBT \(f\left(x\right)=a^2-2a-7\) với \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\)
nên để pt ban đầu có 2 nghiệm x phân biệt <=>pt (*) có 1 nghiệm <=> \(\left[{}\begin{matrix}-m=-8\\-7< -m< \dfrac{7}{4}\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=8\\\dfrac{7}{4}< m< 7\end{matrix}\right.\)
Ý A
\(f\left(a\right)=a^2-2a-7\) chứ không phải f(x) đâu nha
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
ĐKXĐ: \(x\ge3\)
Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)
\(\Rightarrow2\left(t^2+3\right)-t=m\Leftrightarrow2t^2-t+6=m\)
Xét \(f\left(t\right)=2t^2-t+6\) với \(t\ge0\)
\(-\frac{b}{2a}=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=\frac{47}{8}\Rightarrow f\left(t\right)\ge\frac{47}{8}\)
\(\Rightarrow\) Để pt có nghiệm thì \(m\ge\frac{47}{8}\)
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
1.
\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)
2.
\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)
\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)
Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)
\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)
\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:
\(\dfrac{3}{4}< -2m\le3\)
\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)
Cả 4 đáp án đều sai là sao ta?
tại sao để pt đã cho có 2 nghiệm pb thuộc đoạn [1;5] thì \(\dfrac{3}{4}\le-2m\le3\) ạ?