K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 10 2021
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
- Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\] - Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+2\ge0\\\sqrt{x-m+2}-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-2\\x\ne m-1\end{matrix}\right.\)
Hàm số xác định trên (0;1) khi và chỉ khi: \(\left\{{}\begin{matrix}m-2\le0\\\left[{}\begin{matrix}m-1\le0\\m-1\ge1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le2\\\left[{}\begin{matrix}m\le1\\m\ge2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=2\\m\le1\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge m\\x\ge\frac{m+1}{2}\end{matrix}\right.\)
Hàm số xác định trên khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}m\le0\\\frac{m+1}{2}\le0\end{matrix}\right.\) \(\Leftrightarrow m\le-1\)