K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Chọn C

Ta có

 

nên hàm số có 3 điểm cực trị khi m > 1.

Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:

 

Ta có:

Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:

So sánh với điều kiện ta có: m = 1 + 3 3 2  thỏa mãn.

[Phương pháp trắc nghiệm]

Yêu cầu bài toán

 

 

23 tháng 11 2018

Ta có  đao hàm y’ = 4x3- 8( m-1) x= 4x( x2- 2( m-1) )

 

nên hàm số có 3 điểm cực trị khi m> 1.

Với điều kiện m > 1  đồ thị hàm số có 3 điểm cực trị là:

A ( 0 ; 2 m - 1 ) ,   B ( 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) , C ( - 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) .

Ta có: AB2= AC2= 2( m-1) + 16( m-1) 4; BC2= 8( m-1)

Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:

AB= AC= BC tương đương  AB2= AC2= BC2

Do đó: 2( m-1) + 16( m-1) 4= 8( m-1)

⇔ 8 ( m - 1 ) 4 - 3 ( m - 1 ) = 0  

So sánh với điều kiện ta có: m = 1 + 3 3 2   thỏa mãn.

Chọn A.

13 tháng 8 2017

Chọn D.

TXĐ: D = R.

Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt  ⇔ m -1 > 0  ⇔ m > 1(*) 

3 điểm cực trị của đồ thị hàm số là: A(0;1), 

Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng

Ta có 

Kết hợp với điều kiện (*) => m = 2 

Làm theo bào toán trắc nghiệm như sau:

Hàm số đã cho có 3 điểm cực trị khi ab < 0  

Chỉ có đáp án D thỏa mãn.

8 tháng 1 2019

+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)

do đó  hàm số luôn có cực đại cực tiểu với mọi m.

+ Tọa độ các điểm CĐ, CT của đồ thị là  A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)

Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.

 

+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M  tới AB nhỏ nhất.

d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n   d ( M , A B ) = 1 2

đạt được khi m=0

Chọn B

20 tháng 1 2019

+ Điều kiện để hàm số có 3 cực trị là m> 0

 

+ Các điểm cực trị tạo thành tam giác cân có đáy bằng 2√m, đường cao bằng m2. (như hình bên )

 

Ta được  S ∆ A B C = 1 2 A C . B D = m . m 2 .

+  Để tam giác có diện tích nhỏ hơn 1 thì  m . m 2 < 1   h a y   0 < m < 1

Chọn D.

19 tháng 8 2019

Chọn A

Ta có:

Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .

Với điều kiện (*) gọi ba điểm cực trị là:

.

Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.

Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC

Tam giác ABC vuông khi:

Vậy với m = ± 1  thì thỏa mãn yêu cầu bài toán.

[Phương pháp trắc nghiệm]

Yêu cầu bài toán

⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0

⇔ m = ± 1

30 tháng 9 2018

Chọn B

Ta có:

⇒ ∀ m ∈ ℝ , hàm số luôn có CĐ, CT

Tọa độ các điểm CĐ, CT của đồ thị là

Suy ra A B = 2

và phương trình đường thẳng  x + y - 2 m 3 - 3 m 2 - m - 1 = 0

Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.

Ta có:

⇒ đạt được khi m = 0

24 tháng 9 2019

Chọn C

[Phương pháp tự luận]

Hàm số có cực đại , cực tiểu khi và chỉ khi  m < 1

Tọa độ điểm cực trị  A ( 0 ; m + 1 )

Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0

 

Vậy S đạt giá trị lớn nhất  ⇔ m = 0

[Phương pháp trắc nghiệm]

Vậy S đạt giá trị lớn nhất  ⇔ m = 0