Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có: lim x → + ∞ y = 0 ⇒ đồ thị hàm số có 1 tiệm cận ngang là y = 0 .
Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0 có 2 nghiệm phân biệt
x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.
Đáp án là C.
Ta luôn có 1 đường tiệm cận ngang y = 1
Đồ thị hàm số có đúng 2 đường tiệm cận đứng x 2 + m = 0 có nghiệm x = 1 hoặc x = 2 ⇔ m = - 1 m = - 4
Ta có đồ thị hàm số luôn có TCN y = 1
Do đó để ycbt thỏa mãn
Chọn C.
Đáp án D
Hàm số có tiệm cận đứng
⇔ P T m x − 8 = 0 không có nghiệm x = − 2.
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Đáp án D
Hàm số có tiệm cận đứng ⇔ P T m x − 8 = 0 không có nghiệm x=-2
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.