Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Điều kiện x + 5 ≥ 0 4 − x ≥ 0 ⇔ − 5 ≤ x ≤ 4
Xét hàm số f x = x + 5 + 4 − x ; x ∈ − 5 ; 4
Ta có:
f ' x = 1 2 x + 5 − 1 2 4 − x ; f ' x = 0 ⇔ 4 − x = x + 5 ⇔ x = − 1 2
Tính các giá trị f − 5 = 3 ; f 4 = 3 ; f − 1 2 = 3 2
⇒ max − 5 ; 4 f x = f − 1 2 = 3 2
Vậy để phương trình m ≤ f x có nghiệm m ≤ max − 5 ; 4 f x ⇔ m ≤ 3 2
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Đáp án D
Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .
=> 2<m<4.
Chọn phương án D.
Đáp án A
Tập xác định của hàm số: D = 0 ; 4
Ø Xét tử số, đặt g x = x x + x + 12
Em thấy g x > 0 ∀ x ∈ 0 ; 4 g ' x = 3 x 2 x + 1 2 x + 12 > 0 ⇒ g x là hàm dương và đồng biến trên [0;4]
Ø Xét mẫu số, xét h x = 5 − x + 4 − x
Em thấy h x > 0 ∀ x ∈ 0 ; 4 h ' x = − 1 2 5 − x + − 1 2 4 − x < 0
=> h(x) là hàm dương và nghịch biến trên [0;4]
=> 1 h x là hàm đồng biến trên [0;4] ⇒ y = g x . 1 h x là hàm đồng biến trên [0;4]
⇒ maxy = y 4 = 12 ; miny = y 0 = 2 15 − 4 3