K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

Đặt \(t=x^2+x+1\).Ta có:

\(t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\Leftrightarrow\left(t-3\right)\left(t+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x+1=3\\x^2+x+1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x-3=0\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Giải tiếp pt (2) nhé!Boul: Đặt như thế hơi mất thời gian phân tích=)

3 tháng 3 2019

đặt b=x2+x

=> (b+1).(b+2)=12

=> b2+3b+2-12=0

=> b2+5b-2b-10=0

=> b.(b+5)-2.(b+5)=0

=> (b-2).(b+5)=0

tự làm tiếp :)) nha 

\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5=5\)

Vậy biểu thức ko phụ thuộc vào biến x 

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)

\(=3x^4-y^4\)

9 tháng 7 2020

mọi người giúp em nhanh với 

6 tháng 12 2015

Ta có:

\(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\Leftrightarrow3x^2+x^2-13x+5=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x^2+2x-1\right)=0\)

Do đó:

\(3x-5=0\Leftrightarrow x=\frac{5}{3}\)

Vì  \(x_0\)  là giá trị của  \(x\)  thỏa mãn \(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\)  nên  \(x_0=x=\frac{5}{3}\)

Do đó:  \(3x_0=3.\frac{5}{3}=5\)

 

 

23 tháng 7 2019

a) \(x^5+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

23 tháng 7 2019

b) \(6x^2-13x+6\)

\(=\left(6x^2-9x\right)-\left(4x-6\right)\)

\(=3x\left(2x-3\right)-2\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-2\right)\)

21 tháng 6 2018

\(A=\cdot\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

    \(=\left(3x-2y\right)^3\)

thay x=4;y=6 vào 

\(A=\left(3.4-2.6\right)^3=0\)

21 tháng 6 2018

\(A=27x^3-54x^2y+36xy^2-8y^3\)

\(A=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

\(A=\left(3x-2y\right)^3\)

Thay x=4, y=6 vào biểu thức trên, ta được:

\(A=\left(3.4-2.6\right)^3\)

\(A=\left(12-12\right)^3\)

\(A=0^3=0\)

8 tháng 9 2020

Đề bài tương đương với \(2x^2+2y^2+2xy-2x+2y+2=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

\(M=x^{2020}+y^{2020}+2020^{x+y}=1^{2020}+\left(-1\right)^{2020}+2020^{1-1}=1+1+1=3\)

8 tháng 9 2020

x2 + y2 + xy - x + y + 1 = 0

<=> 2( x2 + y2 + xy - x + y + 1 ) = 2.0

<=> 2x2 + 2y2 + 2xy - 2x + 2y + 2 = 0

<=> ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0

<=> ( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0 (*)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

=> x = 1 ; y = -1

Thế vào M ta được 

M = 12020 + (-1)2020 + 20201-1

    = 1 + 1 + 1

    = 3