K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này tương tự bài lúc nãy thôi

Bạn hãy dựa vào cách làm của mình để làm

Chúc bạn may mắn!

29 tháng 1 2017

Gíup mình dzới

Tham khảo:
undefined

có j sai sai;-;

28 tháng 2 2018

Gọi ƯCLN(18n + 3) và (21n + 7) là d

Ta có : 18n + 3 chia hết cho d \(\Rightarrow\)3n + 4 chia hết cho d \(\Rightarrow\) 21n + 28

Ta có : 21n + 28 - 21n + 7 \(\Rightarrow\) 21 chia hết cho d

\(\Rightarrow\) d \(\in\) { 3 ; 7 ;21 }

\(\Rightarrow\) n khác 7a +1

2 tháng 3 2016

Ta có:

\(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)

Nhận thấy 3 và 7 ; 3 và 3n+1 ; 6n+1 và 3n+1 đều là nguyên tố cùng nhau

Để A tối giản 

=>6n+1 không chia hết cho 7

=>\(n\ne1\)

Vậy để A tối gainr thì n khác 0 và n thuộc Z

10 tháng 12 2017

Gọi ƯCLN (18n+3) và (21n+7) là d 
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28 

T​a có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21) 

=>n khác 7a+1

30 tháng 12 2018

Gọi ƯCLN (18n+3) và (21n+7) là d 
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28 

T​a có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21) 

=>n khác 7a+1

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

19 tháng 5 2021

tụi bay là ai

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được