Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)
c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)
a, Thay m = -3 vào pt trên ta được
\(x^2-2x-4=0\)
\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)
pt có 2 nghiệm pb
\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)
b, Để pt có nghiệm kép
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)
bài này dễ mà
a 0 thay m vào tìm đk x
b, xét 2th
+) vs m=-2 thay vào giải tìm ra x
+) vs m khác -2 tính đen -ta cm cho nó lớn hơn hoặc bằng 0
c. áp dụng vi-ét , tính \(3x_1=2x_2\)
PT có 2 nghiệm
\(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left[-\left(m+2\right)\right]^2-1.\left(m^2+m+6\right)\ge0\)
\(\Leftrightarrow m^2+4m+4-\left(m^2+m+6\right)\ge0\)
\(\Leftrightarrow3m-2\ge0\Leftrightarrow m\ge\frac{2}{3}\)
Khi đó áp dụng hệ thức vi-ét, ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m^2+m+6\end{cases}}\)
Không mất tính tổng quát, giả sử \(x_1=3x_2\)
Mà x1 + x2 = 2(m+2)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{3}{2}\left(m+2\right)\\x_2=\frac{1}{2}\left(m+2\right)\end{cases}}\)
Lại có: \(x_1.x_2=m^2+m+6\)
\(\Rightarrow\frac{3}{4}\left(m+2\right)^2=m^2+m+6\)
\(\Leftrightarrow3\left(m+2\right)^2=4\left(m^2+m+6\right)\)
\(\Leftrightarrow3m^2+12m+12=4m^2+4m+24\)
\(\Leftrightarrow m^2-8m+12=0\)
\(\Delta'=\left(-4\right)^2-1.12=4>0\)
Suy ra pt có 2 nghiệm phân biệt:
\(m_1=\frac{4+\sqrt{4}}{1}=6\) (thoả mãn)
\(m_2=\frac{4-\sqrt{4}}{1}=2\) (thoả mãn)
Vậy \(m\in\left\{6;2\right\}\)
Chúc bạn học tốt.