\(x^2-5mx+10m-4\) có hai nghiệm mà nghiệm n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Gọi hai nghiệm của A(x) là x1 và x2 và x1 = 2x2

Ta có: A(x1) = x12 - 5mx1 + 10m - 4 = 0
A(x2) = x22 - 5mx2 + 10m - 4 = 0
\(\Rightarrow\) x12 - 5mx1 + 10m - 4 = x22 - 5mx2 + 10m - 4 = 0
\(\Rightarrow\) x12 - 5mx1 - x22 + 5mx2 = 0
\(\Rightarrow\) 4x22 - 10mx2 - x22 + 5mx2 = 0
\(\Rightarrow\) 3x22 - 5mx2 = 0
\(\Rightarrow\) x2(3x2 - 5m) = 0
\(\Rightarrow\) x2 = 0 hoặc 3x2 - 5m = 0
\(\Rightarrow\) x2 = 0 hoặc 3x2 = 5m
\(\Rightarrow\) x2 = 0 hoặc x2 = \(\dfrac{5m}{3}\)

Với x2 = 0, ta có:
A(x2) = 0
\(\Leftrightarrow\) 10m - 4 = 0
\(\Leftrightarrow\) 10m = 4
\(\Leftrightarrow\) m = \(\dfrac{2}{5}\)

Với x2 = \(\dfrac{5m}{3}\), ta có:
A(x2) = 0
\(\Leftrightarrow\left(\dfrac{5m}{3}\right)^2-5m\left(\dfrac{5m}{3}\right)+10m-4=0\)
\(\Leftrightarrow\left(\dfrac{5m}{3}\right)^2-5m\left(\dfrac{5m}{3}\right)+10m=4\)
\(\Leftrightarrow\dfrac{25m^2}{9}-\dfrac{25m^2}{3}+10m-4=0\)
\(\Leftrightarrow25m^2-75m^2+90m-36=0\)
\(\Leftrightarrow50m^2-90m+36=0\)
\(\Leftrightarrow25m^2-45m+18=0\)
\(\Leftrightarrow25\left(m-\dfrac{6}{5}\right)\left(m-\dfrac{3}{5}\right)=0\)
\(\Leftrightarrow m-\dfrac{6}{5}=0\) hoặc \(m-\dfrac{3}{5}=0\)
\(\Leftrightarrow m=\dfrac{6}{5}\) hoặc \(m=\dfrac{3}{5}\)

Vậy \(m=\dfrac{2}{5}\), \(m=\dfrac{6}{5}\) hoặc \(m=\dfrac{3}{5}\)

\(\text{Δ}=\left(-5m\right)^2-4\left(10m-4\right)\)

\(=25m^2-40m+16=\left(5m-4\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Áp dụng Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m-4\end{matrix}\right.\)(1)

Theo đề, ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=5m\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}m\\x_1=\dfrac{10}{3}m\end{matrix}\right.\)(2)

Từ (1) và (2) suy ra \(10m-4=\dfrac{5}{3}m\cdot\dfrac{10}{3}m\)

\(\Leftrightarrow m^2\cdot\dfrac{50}{9}-10m+4=0\)

\(\Leftrightarrow50m^2-90m+40=0\)

=>5m2-9m+4=0

=>(m-1)(5m-4)=0

=>m=4/5 hoặc m=1

4 tháng 5 2017

Ta thấy x=2 là nghiệm của đa thức A(x) với mọi giá trị của x vì :

A(2) = 22 - 5.2m +10m -4

=4-10m+10m-4=0

Nên đa thức A(x) có 2 nghiệm mà nghiệm này gấp đôi nghiệm kia khi nghiệm còn lại của đa thức A(x) là 1 hoặc 4

*) x=1 là nghiệm của đa thức A(x) <=> A(1) =0

<=> 5m-3=0 => 5m=3 => m=3/5

*) x=4 là nghiệm của đa thức A(x) <=> A(4) =0

<=> 12-10m=0 => -10m=-12 => 10m=12 => m=6/5

Vậy m=3/5 và m=6/5 là các giá trị cần tìm

5 tháng 5 2017

Chơi delta luôn:

Giải:

Ta có: \(A\left(x\right)=x^2-5mx+10m-4\)

\(\Leftrightarrow\Delta=\left(5m-4\right)^2\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=5m-2\\x_2=2\end{matrix}\right.\)

Ta xét 2 trường hợp: \(\left[{}\begin{matrix}x_1=2x_2\\x_2=2x_1\end{matrix}\right.\)

Trường hợp 1: Nếu \(x_1=2x_2\)

\(\Leftrightarrow5m-2=4\Leftrightarrow5m=6\Leftrightarrow m=\dfrac{6}{5}\)

Trường hợp 2: Nếu \(x_2=2x_1\)

\(\Leftrightarrow2\left(5m-2\right)=2\Leftrightarrow5m-2=1\)

\(\Leftrightarrow5m=3\Leftrightarrow m=3\div5=\dfrac{3}{5}\)

Vậy các giá trị cần tìm là: \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\)

3 tháng 4 2018

ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)hoặc \(x+5=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(x+5=0\Rightarrow x=-5\)

\(\)vậy \(x\in(1;-5)\)

đúng thì k nha

3 tháng 4 2018

B=X^2-X+5X-5 =  X(X-1)+5(X-1)=(X-1)(X-5)=0

9 tháng 5 2017

Câu hỏi của Việt Trần - Toán lớp 7 | Học trực tuyến

20 tháng 3 2022

Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)