Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-3\left(m-1\right)\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-m^2-m+2\le0\end{matrix}\right.\) \(\Rightarrow m\ge1\)
b/ \(\left\{{}\begin{matrix}m^2+4m-5< 0\\\Delta'=\left(m-1\right)^2-2\left(m^2+4m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-5< 0\\-m^2-10m+11\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-5< m< 1\\\left[{}\begin{matrix}m\le-11\\m\ge1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
c/ Do \(x^2-8x+20=\left(x-4\right)^2+4>0\) \(\forall x\) nên BPT nghiệm đúng với mọi x khi mẫu số âm với mọi x
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(9m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-8m^2-2m+1< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{2}\\m>\frac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{2}\)
d/ Do \(3x^2-5x+4>0\) \(\forall x\) nên BPT luôn đúng khi:
\(\left\{{}\begin{matrix}m-4>0\\\left(m+1\right)^2-4\left(2m-1\right)\left(m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(\Leftrightarrow\left|x^2-3x+2\right|-3x^2-5x\ge3m^2+5m\)
Xét hàm \(f\left(x\right)=\left|x^2-3x+2\right|-3x^2-5x\)
- Với \(\left\{{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=-2x^2-8x+2=-2\left(x+2\right)^2+10\le10\)
- Với \(1< x< 2\Rightarrow f\left(x\right)=-4x^2-2x-2\) \(\Rightarrow-22< f\left(x\right)< -8\)
Vậy để BPT đã cho có nghiệm thì \(3m^2+5m\le maxf\left(x\right)\)
\(\Rightarrow3m^2+5m\le10\)
\(\Leftrightarrow3m^2+5m-10\le0\Rightarrow\frac{-5-\sqrt{145}}{6}\le m\le\frac{-5+\sqrt{145}}{6}\)
Câu 2:
\(\Leftrightarrow\left|x^2+x-6\right|-4x=m\)
Xét \(f\left(x\right)=\left|x^2+x-6\right|-4x\)
Với \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=x^2-3x-6\)
\(-\frac{b}{2a}=\frac{3}{2}\notin\left(-\infty;-3\right)\cup\left(2;+\infty\right)\Rightarrow f\left(x\right)\) nghịch biến trên \(\left(-\infty;-3\right)\); đồng biến trên \(\left(2;+\infty\right)\)
Với \(-3< x< 2\) \(\Rightarrow f\left(x\right)=-x^2-5x+6\)
\(-\frac{b}{2a}=-\frac{5}{2}\in\left[-3;2\right]\) \(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(-3;-\frac{5}{2}\right)\) ; nghịch biến trên \(\left(-\frac{5}{2};2\right)\)
Ta có \(f\left(-3\right)=12\) ; \(f\left(-\frac{5}{2}\right)=\frac{49}{4}\); \(f\left(2\right)=-8\)
Bảng biến thiên:
Từ BBT ta thấy để pt có 4 nghiệm \(\Rightarrow12< m< \frac{49}{4}\)