Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có:
y ' = x 2 − 2 m − 1 x = 0 ⇔ x = 0 ⇒ y = 1 − 3 m ⇒ A 0 ; 1 − 3 m x = 2 m − 1 ⇒ y = − 4 3 m − 1 2 + 1 − 3 m ⇒ B
Điều kiện hàm số có 2 cực trị là m ≠ 1 . Rõ ràng khi đó PT đường thẳng qua AC là x = 0
Để A, B, C thẳng hàng thì x B = 0 ⇒ m − 1 l o a i A ≡ C ⇒ m = 2 ⇔ m = 2
Đáp án D.
Hai đường thẳng d và d ' cắt nhau khi và chỉ khi hệ phương trình
1 + a 2 t = 3 − t ' t = 2 + t ' − 1 + 2 t = 3 − t ' có đúng một nghiệm ⇔ t = 2 t ' = 0 a = ± 1 .
Vậy ta chọn D.
Đặt t = 3 x > 0 . Bất phương trình đã cho trở thành
a t 2 + 9 a - 1 t + a - 1 > 0 ⇔ a > 9 t t 2 + 9 t + 1
Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi a > m a x t ∈ 0 ; + ∞ f t với f t = 9 t t 2 + 9 t + 1
Ta có f ' t = - 9 t 2 t 2 + 9 t + 1 2 < 0 ; ∀ t > 0 ⇒ f t là hàm nghịch biến trên 0 ; + ∞ .
Suy ra f(t) < f(0) = 1
Do đó 9 t t 2 + 9 t + 1 < 1 ; ∀ t > 0 nên các giá trị của a cần tìm là a ≥ 1
Đáp án B
Đáp án C
Số giao điểm của đường thẳng y = ( m - 1 ) x và đồ thị hàm số y = x 3 - 3 x 2 + m + 1 là số nghiệm của PT x 3 - 3 x 2 + m + 1 = ( m - 1 ) x ⇔ x 3 - 3 x 2 + x + 1 - m x + m = 0 ⇔ ( x - 1 ) ( x 2 - 2 x - m - 1 ) = 0 để tồn tại ba giao điểm phân biệt thì 1 - 2 - m - 1 ≢ 0 ∆ ' = 1 + m + 1 > 0 ⇔ m ≢ - 2 m > - 2 khi đó tọa độ ba giao điểm là B ( 1 ; m - 1 ) , A ( x 1 ; y 1 ) , C ( x 2 ; y 2 ) hơn nữa x 1 + x 2 2 = 1 y 1 + y 2 2 = ( m - 1 ) x 1 + ( m - 1 ) x 2 2 = ( m - 1 ) ( x 1 + x 2 ) 2 = m - 1
⇒ B là trung điểm AC hay ta có AB=BC
Đáp án B
Ta có l i m a . 2 n - 3 a + 2 n + 1 = l i m a . 2 n - 3 a + 2 . 2 n = l i m a - 3 2 n 2 + a 2 n = a 2 = 1 ⇒ a = 2