Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Từ gt=> 10a+b+10b+a là scp=> 11(a+b) là scp=> a+b có dạng 11k^2. Vì 0<a<10,0=<b<10 nên lần lượt thử ta thấy các số ab 56,65 thỏa mãn
đặt a2-12=k2 mà a^2 -12là một số chính phương suy ra k2 là số tự nhiên nên k là số nguyên
a2-k2=12
(a+k)(a-k)=12
(a+k) thuộc ư(12)=(1;2;3;4;6;12;-1;-2;-3;-4;-6;-12)
ta có bản sau:
a+k 1 2 3 4 6 12 -1 -2 -3 -4 -6 -12
a-k 12 6 4 3 2 1 -12 -6 -4 -3 -2 -1
nếu a+k=1, a-k=12 thì a+k+a-k=13 suy ra a=13/2, k=-11/2 (loại
nếu a+k=2,a-k=6 thì a+k+a-k=8 suy ra a=4,k=-2(nhận
bạn cứ xét hết nếu a là số tự nhiên, k là số nguyên là nhận, sau đó bạn tìm đc a
xét A=ab+ba=10 a+b+10b+a=11(a+b) =>A chia hết cho 11 mà 11 là số nguyên tố A là so chinh phuong=> A chia hết 11^2
=>11(a+b) chia hết 11^2=> a+b chia hết 11 mà a,b là chữ số a,b khác 0=>
TA có bảng sau:
thank you very much . cảm ơn bạn nha