K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

\(\Leftrightarrow2^x+624=5^y\) (1)

Nếu x thuộc N và x >1 thì VT (1) chẵn không thể bằng VP (1) lẻ được => x = 0 => y = 4.

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

28 tháng 8 2020

\(x^3-y^3+xy=1\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)+xy=1\)

\(\Leftrightarrow\left(x-y\right)^3+\frac{1}{27}+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)

\(\Leftrightarrow\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}\right]+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)

\(\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}+3xy\right]=\frac{26}{27}\) 

Đoạn này ez

14 tháng 5 2018

\(x^2-\left(5+y\right)x+2+y=0\Leftrightarrow x^2-\left(5+y\right)x+5+y-1=2\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(y+5\right)\left(x-1\right)=2\)

\(\Leftrightarrow\left(x-1\right)\left(x-y-4\right)=2=1\cdot2=2\cdot1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)

Giải phương trình tích trên ta được 4 tập nghiệm là \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(3;-2\right);\left(0;-2\right);\left(-1;-4\right)\right\}\) 

21 tháng 2 2019

Nghĩ ra rồi -_-

Phương trình trên có nghiệm khi và chỉ khi \(\Delta=\left(5+y\right)^2-4\left(2+y\right)\ge0\)

\(\Leftrightarrow y^2+6y+17\ge0\) (luôn đúng do VT >= 8 với mọi y)

Để phương trình có nghiệm nguyên thì \(\Delta\)là số chính phương.

Đặt \(y^2+6y+17=k^2\)

Suy ra \(\left(y+3\right)^2+8=k^2\) (\(k\inℕ\))

\(\Leftrightarrow\left(y+3\right)^2-k^2=8\)

\(\Leftrightarrow\left(y+3-k\right)\left(y+3+k\right)=8\)

Lập bảng ước số là ra.

10 tháng 3 2022

-Lú thiệt sự.... :))

10 tháng 3 2022

-Lú thiệt sự.... :))

5 tháng 11 2017

 Câu trả lời hay nhất:  trừu tượng. nếu không nguyên 
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định 
đặt x+y=a=> y=a-x 
thay vào pt điều kiện 

2(x^2+1)+x^2=2(a-x)(x+1) 
3x^2+2 =2ax+2a-2x^2-2x 
5x^2+2x-2ax+2-2a=0 
5x^2+2(1-a)x+2(1-a)=0 
(1-a)^2-10(1-a)>=0 
(1-a)(1-a-10)>=0 
(a-1)(a+9)>=0 
a<=-9 
hoặc 
a>=1 

(x+y)<-9 hoặc (x+y)>=1

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

27 tháng 9 2016

Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?

27 tháng 9 2016

hỏi nhanh thế?

21 tháng 3 2018

x^2y là sao bạn hình như sai ở chỗ đó

21 tháng 3 2018

đó là (x^2)*y nha