K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)

 Do đó , y là số lẻ 

Mà 12x , y2  \(\equiv1\left(mod8\right)\)

Suy ra 5x \(\equiv1\left(mod8\right)\)

=> x chẵn 

Đặt x = 2k (k > 0)

=> 52k = (y - 12k)(y + 12k

Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m 

và y - 12k = 5m 

=> 2.12k = 5m(52k - 2m - 1)

Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5 

=> 52k + 122k = (12k + 1)2

Mà 2.12k  =  5m =>  m = 0 và y = 12k + 1

=> 2.12k = 25k - 1

Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình 

Vậy x = 2 , y = 13

17 tháng 5 2018

b) Dùng nhị thức Newton , ta khai triển hai hạng tử được 

\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)

Vậy ...... 

18 tháng 8 2023

=2

 

18 tháng 8 2023

=2

9 tháng 3 2022

Đặt a2=2x+5y

-Nếu x=0⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)

Nếu n=0→5m−1=2⇒5m=3 (vô lý)

Nếu n≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại

Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.

-Nếu x>3

  +) Với y lẻ: Đặt y=2k+1 (kN). Ta có: a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)a2 không là số chính phương loại.

  +) Với y chẵn: Đặt y=2k (kN)⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:

$ab^2=b-a-1$

$\Leftrightarrow ab^2+a+1-b=0$

$\Leftrightarrow a(b^2+1)+(1-b)=0$

$\Leftrightarrow a=\frac{b-1}{b^2+1}$

Để $a$ nguyên thì $b-1\vdots b^2+1$

$\Rightarrow b^2-b\vdots b^2+1$

$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$

$\Rightarrow b+1\vdots b^2+1$

Kết hợp với $b-1\vdots b^2+1$

$\Rightarrow (b+1)-(b-1)\vdots b^2+1$

$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm) 

Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$

Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)

Với $b=-1$ thì $a=-1$

Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)