K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

giờ làm được chưa

6 tháng 2 2016

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

6 tháng 2 2016

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

8 tháng 12 2017

a) Tổng ba số tự nhiên liên tiếp có dạng như sau:

(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6

Mà 1k6 chia hết cho 3 (6 chia hết cho 3)

Nên tổng ba số tự nhiên liên tiếp chia hết cho 3

b) Tổng bốn số tự nhiên liên tiếp có dạng:

(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10

1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4

16)

a) (15 + 7n) chia hết cho n

Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k

Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0

Suy ra n thuộc U(15)

Ư(15) = { 1 ; 3 ; 5 ; 15 }

Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n

Ta có: 71 chia hết cho 1   ( 1 là n) => Chọn

73 không chia hết cho 3 (3 là n)   => Bỏ chọn 

75 chia hết cho 5            ..tương tự như trên..   => Chọn

7(15) vượt quá số có 2 chữ số => Bỏ chọn

Vậy n được là: 1 và 5

b) Tương tự như trên

17) 66a + 55b = 111 011?

Nhận xét: 111 011? là số có 7 chữ số

Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.

4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên

18 tháng 9 2018

17

Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b

DD
13 tháng 7 2021

Đặt \(n\)số tự nhiên đó lần lượt là \(a_1,a_2,...,a_n\).

Đặt \(S_1=a_1,S_2=a_1+a_2,S_3=a_1+a_2+a_3,...,S_n=a_1+a_2+...+a_n\).

Nếu có tổng nào trong \(n\)tổng trên chia hết cho \(n\)ta có đpcm. 

Nếu không có tổng nào trong \(n\)tổng trên chia hết cho \(n\), khi đó số dư của \(S_k\)khi chia cho \(n\)có thể nhận là \(1,2,...,n-1\)mà có \(n\)tổng, \(n-1\)số dư nên chắc chắn có ít nhất hai trong \(n\)tổng \(S_k\)có cùng số dư khi chia cho \(n\).

Giả sử đó là \(S_x,S_y,x>y\)

Khi đó \(S_x-S_y\)chia hết cho \(n\).

\(S_x-S_y\)là tổng của \(x-y\)số liên tiếp \(S_{y+1},S_{y+2},...,S_x\).

Ta có đpcm. 

3 tháng 9 2017

Ta có: n = 161718192021.... 89
 

Trước hết xét dãy 20, 21, 22, ... , 29, 30, 31, .... ,89.
 

Tổng các chữ số hàng chục của dãy là:
 

(2 + 3 + 4 + 5 + 6 + 7 + 8).10 = 35.10 = 350
 

Tổng các chữ số hàng đơn vị của dãy là:
 

...

5 tháng 9 2017

gọi a là số cần tìm ta có a=các số tự nhiên viết liên tiếp từ 48 đến 267