Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố
- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố
- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố
- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố
- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)
, luôn là hợp số.
Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.
thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
Lời giải:
Ta có:
\(n^4+4^{2k+1}=(n^2)^2+(2^{2k+1})^2=(n^2+2^{2k+1})^2-2.n^2.2^{2k+1}\)
\(=(n^2+2^{2k+1})^2-(2^{k+1}n)^2\)
\(=(n^2+2^{2k+1}-2^{k+1}n)(n^2+2^{2k+1}+2^{k+1}n)\)
Để số trên là số nguyên tố thì điều kiện đầu tiên là một trong hai thừa số \(n^2+2^{2k+1}-2^{k+1}n; n^2+2^{2k+1}+2^{k+1}n\) phải bằng 1
Vì \(n^2+2^{2k+1}-2^{k+1}n< n^2+2^{2k+1}+2^{k+1}n\) nên :
\(n^2+2^{2k+1}-2^{k+1}n=1\)
Đặt \(2^{k+1}=t(t>0)\). PT trở thành:
\(n^2+\frac{t^2}{2}-tn=1\)
\(\Leftrightarrow 2n^2+t^2-2tn=2\)
\(\Leftrightarrow (t-n)^2+(n^2-2)=0\)
Nếu \(n\geq 2\Rightarrow n^2-2>0; (t-n)^2\geq 0\)
\(\Rightarrow (t-n)^2+(n^2-2)>0\) (vô lý)
Do đó \(n<2\). Vì \(n\in\mathbb{N}\Rightarrow n\in\left\{0;1\right\}\)
+) \(n=0\Rightarrow t^2-2=0\Rightarrow t\not\in\mathbb{N}\) (vô lý)
+) \(n=1\Rightarrow (t-1)^2=1\Rightarrow t-1=\pm 1\Leftrightarrow t=0;2\)
Thấy \(t>0\Rightarrow t=2\Leftrightarrow 2^{k+1}=2\Leftrightarrow k+1=1\Leftrightarrow k=0\)
Vậy \((n,k)=(1,0)\)