Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)
Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)
Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).
Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn.
Vậy \(n=0\)hoặc \(n=1\).
Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
m^2 + 1 \(\ge1\) với mọi m . Mà m, n là số nguyên => 2^n > 1 => n là số nguyên không âm.
+) TH1: n = 0
=> m^2 + 1 = 1 => m = 0 ( thỏa mãn )
+) TH2: n = 1
=> m^2 + 1 = 2 => m^2 = 1 <=> m = 1 hoặc m = - 1 thỏa mãn
+) TH3: n> 1
=> 2^n \(⋮\)4
Mà m^2 + 1 chia 4 dư 1
=> loại
Vậy ( m; n ) \(\in\){ ( 0; 0) ; ( 1; 1) ; (-1; 1 ) }
Sửa lại một chút ở dòng thứ 8:
Mà m^2 + 1 chia 4 dư 1 hoặc 2 ( vì m^2 chia 4 dư 0 hoặc 1 )