Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4-4x^3+4=4y^2\)
Ta có:
\(\left(2x^2-x-1\right)^2< 4x^4-4x^3+4=4y^2< \left(2x^4-x+3\right)^2\)
\(\Leftrightarrow\left(4x^4-4x^3+4\right)=\left(\left(2x^2-x\right)^2;\left(2x^2-x+1\right)^2;\left(2x^2-x+2\right)^2\right)\)
Làm nốt
Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)
Vì x,y nguyên dương nên
\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:
\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)
Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)
mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)
*x=1 thay vào (1) ta có:
\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)
mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)
*y=2 thay vào (1) ta được:
\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)
Sau đó cm pt trên không có nghiệm nguyên dương.
Vậy x=1;y=3
Để cho gọn, đặt {x2=ay2=b
(a+4b+28)2−17a2−17b2=238b+833
\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833
\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0
\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0
\(\Leftrightarrow\)(2x−y)(2x+y)=7
Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương
\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3
Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)
#Shinobu Cừu
Có: \(x^5+y^2=xy^2+1\)
<=> \(x^5-1=y^2\left(x-1\right)\)(1)
TH1: x = 1
=> \(1^2+y^2=1.y^2+1\) đúng với mọi y
TH2: \(x\ne1\)
(1) <=> \(y^2=x^4+x^3+x^2+x+1\)
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Có:
+) \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)
\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)
=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)
+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)
=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)
<=> x = 0
=> \(y=\pm1\)
TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)
<=> \(2x+3-x^2=0\)
<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Với x = -1 => \(y=\pm1\)
Với x = 3 => \(y=\pm11\)
Kết luận:...
\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)
\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)
TH1 : \(x=1\Rightarrow y\in Z\)
TH2 : \(x^3+x^2+x+1=y^3\)
Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)
\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)
Vậy \(x=1\) và \(y\in Z\)
Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).
Xét \(x\ne0\). Khi đó \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.
(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).
Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).
Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4
(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)
Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.
Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).
Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).
Trường hợp 2 ngược lại.
Tới đây bạn tự giải được nha.
\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)
\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)
\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)
\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)
\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)
đến đây tự làm tiếp nhé