\(x^3-x^2y+3x-2y-5=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2018

\(x^3+3x-5-y\left(x^2+2\right)=0\Rightarrow x^3+3x-5=y\left(x^2+2\right)\)

\(\Rightarrow y=\dfrac{x^3+3x-5}{x^2+2}=x+\dfrac{x-5}{x^2+2}\)

Để y nguyên \(\Rightarrow\dfrac{x-5}{x^2+2}\) nguyên với x nguyên

Đặt \(\dfrac{x-5}{x^2+2}=a\) với a nguyên \(\Rightarrow ax^2-x+2a+5=0\) (1)

=>(1) có nghiệm nguyên

Xét \(\Delta=1-4a\left(2a+5\right)=-8a^2-20a+1\ge0\)

\(\Rightarrow\dfrac{-5-3\sqrt{3}}{4}\le a\le\dfrac{-5+3\sqrt{3}}{4}\Rightarrow a=-2;-1;0\)

\(a=-2\Rightarrow-2x^2-x+1=0\Rightarrow x=-1\Rightarrow y=\dfrac{x^3+3x-5}{x^2+2}=-3\)

\(a=-1\Rightarrow-x^2-x+3=0\) =>không có nghiệm nguyên

\(a=0\Rightarrow x-5=0\Rightarrow x=5\Rightarrow y=x+a=5\)

Vậy có 2 cặp số nguyên (x;y) thỏa mãn phương trình là (-2;-3) và (5;5)

11 tháng 11 2018

thanks bn nhìu nha

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

3 tháng 4 2020

\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)

<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)

<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)

<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)

<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)

=>phương trình vô nghiệm

3 tháng 4 2020

                                                                     Giải

5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )

    = [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2  ) 

    = ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )

    = A2  - 4 ( A - 2 )

    <=> A2 - 4.A + 3 = 0

    <=>   \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)

Lưu ý : đặt : A = xy - x - 2y + 4 

TH1 : xy - x - 2.y + 4  = 3 

<=> xy - x - 2y + 1        = 0 

<=> x.( y  - 1 ) - 2.(y-1 ) = 1

<=> ( x - 2 )  (  y - 1 ) = 1 

Ta có bảng : 

x-21-1
 y - 1 1-1
3-1
y20

TH2 : xy - x - 2y + 4 = 1 

<=> ( x- 2 ) . ( y -1 ) =-1 

x-2 -11
y - 11-1
 x   -13
  20
19 tháng 2 2016

pt<=> x^2y+2y=x^3+3x-5

<=>y(x^2+2)=x^3+3x-5

y=\(\frac{x^3+3x-5}{x^2+2}=\frac{\left(x^3+2x\right)+x-5}{x^2+2}=x+\frac{x-5}{x^2+2}\)

vì x thuộc Z,y thuộc Z=>\(\frac{x-5}{x^2+2}\)thuộc Z =>x-5 chia hết  cho x^2+2

=>(x-5)(x+5) chia hết cho x^2+2=> x^2-25 chia hết x^2+2=>27 chia hết cho x^2+2

=>x^2+2=(1;-1;3;-3;-9;9;27;-27)

tự thay vô tim x,y

19 tháng 2 2016

áp dụng denta mà giải

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

14 tháng 10 2017

ta có: \(5-x^2-2x=y^2+2y+2.\)

\(\Leftrightarrow\left(y+1\right)^2+\left(x+1\right)^2=5\)

mà \(\left(y+1\right)^2\ge0;\left(x+1\right)^2\ge0\) nên

\(\left(y+1\right)^2+\left(x+1\right)^2=0+5=1+4=2+3\)

TH1: \(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(x+1\right)^2=5\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=\sqrt{5}-1\end{cases}}}\)

đến đây tự giải đc rồi nha! 

xét xong 3 cặp trên thì kết luận vì x,y có vai trò như nhau nên ta có 6 cặp

14 tháng 10 2017

Võ Thị Quỳnh Giang sai rồi bạn, bài này mình giải được rồi !