K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

3 tháng 7 2021

Ta có: 2x2 + 2xy - x + y = 66

<=> (x + y)2 + x2 - y2 - (x - y) = 66

<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1 + x - y) = 65

<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)

Lập bảng: 

x + y - 1  1 5 13 65
 2x + 1 65 13 5 1
  x 32 6 2 0
  y -30 (ktm) 0 12 66

Vậy ...

(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41

⇒ y = {0; ±1; ±2; ±3} 

Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy) 

 Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒  x = −1

                                                         x = −2

- Với y=-1............................ bạn làm tương tự

22 tháng 10 2017

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)